A Framework to Incorporate Decision-Maker Preferences Into Simulation Optimization to Support Collaborative Design

Loading...
Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC445 HOES LANE, PISCATAWAY, NJ 08855-4141

Abstract

In this paper, we are concerned with the use of simulation optimization to handle collaborative design problems where more than one decision-maker is involved. We assume that the designers cannot enumerate all their considerations in closed-form, precise mathematical expressions but they can examine the merits of solutions with respect to their preferences and can compare candidate solutions with one another. We propose a three-stage framework to take the decision-makers' such considerations into account. The first step is to obtain a diverse set of designs that can all be considered efficient in terms of a performance metric ( i.e.,the objective function values of the simulation optimization model). These solutions are then passed on to the decision-makers to be analyzed in terms of their preferences that could not have been previously considered. Finally, the most appropriate solution is chosen. We address the problem encountered in the first step as a multimodal optimization problem. We address the second and the third subproblems as a preference aggregation problem in the social choice theory. We also illustrate the effectiveness of the proposed approach through a supply chain design problem inspired from the literature. We use the crowding clustering genetic algorithm as an example to demonstrate the first step. We use a multiplicative variant of the popular analytic hierarchy process to illustrate how the second and the third steps can be handled.

Description

Keywords

supply chain, simulation optimization, preference aggregation, multimodal optimization, decision-maker preferences, collaborative design, Analytic hierarchy process

Turkish CoHE Thesis Center URL

Citation

WoS Q

Scopus Q

Source

Volume

Volume 47 Issue 2 Page 229-237

Issue

Start Page

End Page