Control Over the Training Performance of Quantum State Tomography With Reservoir Computing Networks

dc.contributor.author Borisenok, S.
dc.date.accessioned 2025-09-25T10:43:12Z
dc.date.available 2025-09-25T10:43:12Z
dc.date.issued 2024
dc.description.abstract The evaluation of unknown states for a given quantum system is one of the key problems in quantum information processing. The most efficient method of state characterization is quantum state tomography (QST), where the full-density matrices are reconstructed from the experimental measurements or numerical simulations performed on quantum states. The improvement of the computational performance in quantum state tomography and its related problems is a challenging task for modern theoretical physics. The general scheme of computing deals with the input information that goes into a quantum reservoir through a recurrent evolution. After the evolution, the final output is obtained as the linear combination of the readout elements. In our approach, the quantum reservoir is modeled with the Lindbladian equation. The control over performance is made by the coherent coupling parameter between the input quantum state and the reservoir. The control feedback algorithm is represented with the set of Kolesnikov’s target attractor algorithm to drive certain parameters of quantum state tomography, particularly, the outputs for the density matrix. Here we formulate the target attractor feedback in a discrete form to improve the training performance of QST and then develop a basic example of the state tomography for the quantum system of spin 1/2. We conclude by mentioning the basic features of our algorithm and its possible development. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.35470/2226-4116-2024-13-4-275-280
dc.identifier.issn 2223-7038
dc.identifier.issn 2226-4116
dc.identifier.scopus 2-s2.0-85215267414
dc.identifier.uri https://doi.org/10.35470/2226-4116-2024-13-4-275-280
dc.identifier.uri https://hdl.handle.net/20.500.12573/3538
dc.language.iso en en_US
dc.publisher Institute for Problems in Mechanical Engineering, Russian Academy of Sciences en_US
dc.relation.ispartof Cybernetics and Physics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Non-Linear Feedback Algorithms en_US
dc.subject Quantum Informatics en_US
dc.subject Quantum State Tomography en_US
dc.subject Reservoir Computing Networks en_US
dc.subject Target Attractor en_US
dc.title Control Over the Training Performance of Quantum State Tomography With Reservoir Computing Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Borisenok, S.
gdc.author.scopusid 14055402800
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Borisenok] S., Department of Electrical and Electronic Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey, Boğaziçi Üniversitesi, Bebek, Turkey en_US
gdc.description.endpage 280 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 275 en_US
gdc.description.volume 13 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4405861022
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.3737945E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.23
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Borısenok, Sergey
relation.isAuthorOfPublication c6cd9cda-f721-4de6-aeec-0615863628a9
relation.isAuthorOfPublication.latestForDiscovery c6cd9cda-f721-4de6-aeec-0615863628a9
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication f22f14aa-23ad-40e4-bc25-b9705d4051ed
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files