Camera-Based Wildfire Smoke Detection for Foggy Environments

dc.contributor.author Tas, Merve
dc.contributor.author Tas, Yusuf
dc.contributor.author Balki, Oguzhan
dc.contributor.author Aydin, Zafer
dc.contributor.author Tasdemir, Kasim
dc.date.accessioned 2025-09-25T10:42:05Z
dc.date.available 2025-09-25T10:42:05Z
dc.date.issued 2022
dc.description Tasdemir, Kasim/0000-0003-4542-2728; en_US
dc.description.abstract Smoke is the first visible sign of forest fires and the most commonly used feature for early forest fire detection using data from cameras. However, one of the natural challenges is the dense fog that appears in forests, which decreases the detection accuracy or triggers false alarms. In this study, we propose a system with a deep neural network-based image preprocessing approach that significantly improves the smoke segmentation and classification performance by dehazing the camera view. Our experimental results provide that the classification models reach 99% F1 score for the correct classification of smoke when the image dehazing method is used before the training process. The smoke localization system achieves 60% average precision when the mask region-based convolutional neural network is used with the ResNet101-FPN backbone. The proposed approach can be utilized for all smoke segmentation frameworks to increase fire detection performance. (c) 2022 SPIE and IS&T en_US
dc.description.sponsorship Turkish Higher Education Council [100/2000] en_US
dc.description.sponsorship The first author, Merve Tas, was supported by the Turkish Higher Education Council's 100/2000 Scholarship Program. en_US
dc.identifier.doi 10.1117/1.JEI.31.5.053033
dc.identifier.issn 1017-9909
dc.identifier.issn 1560-229X
dc.identifier.scopus 2-s2.0-85163811871
dc.identifier.uri https://doi.org/10.1117/1.JEI.31.5.053033
dc.identifier.uri https://hdl.handle.net/20.500.12573/3411
dc.language.iso en en_US
dc.publisher SPIE - Society of Photo-Optical Instrumentation Engineers en_US
dc.relation.ispartof Journal of Electronic Imaging en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep Learning en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Forest Fire Detection en_US
dc.subject Image Dehazing en_US
dc.subject Smoke Detection and Segmentation en_US
dc.title Camera-Based Wildfire Smoke Detection for Foggy Environments en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Tasdemir, Kasim/0000-0003-4542-2728
gdc.author.scopusid 59203624500
gdc.author.scopusid 57201385985
gdc.author.scopusid 35783957400
gdc.author.scopusid 7003852510
gdc.author.scopusid 26538758900
gdc.author.wosid Tasdemir, Kasim/Aga-4286-2022
gdc.author.wosid Taş, Merve/Hgv-0853-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Tas, Merve] Abdullah Gul Univ, Grad Sch Engn & Nat Sci, Dept Elect & Comp Engn, Kayseri, Turkey; [Tas, Merve; Aydin, Zafer; Tasdemir, Kasim] Abdullah Gul Univ, Artificial Intelligence Res Grp AGU AI Res Grp, Kayseri, Turkey; [Tas, Yusuf] Erciyes Univ, Grad Sch Nat Appl Sci, Kayseri, Turkey; [Balki, Oguzhan] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA USA; [Aydin, Zafer; Tasdemir, Kasim] Abdullah Gul Univ, Sch Engn, Dept Comp Engn, Kayseri, Turkey en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.volume 31 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W4307640445
gdc.identifier.wos WOS:000877897300063
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.6628062E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.199531E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.73272502
gdc.openalex.normalizedpercentile 0.66
gdc.opencitations.count 3
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Aydın, Zafer
gdc.wos.citedcount 4
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files