Camera-Based Wildfire Smoke Detection for Foggy Environments
| dc.contributor.author | Tas, Merve | |
| dc.contributor.author | Tas, Yusuf | |
| dc.contributor.author | Balki, Oguzhan | |
| dc.contributor.author | Aydin, Zafer | |
| dc.contributor.author | Tasdemir, Kasim | |
| dc.date.accessioned | 2025-09-25T10:42:05Z | |
| dc.date.available | 2025-09-25T10:42:05Z | |
| dc.date.issued | 2022 | |
| dc.description | Tasdemir, Kasim/0000-0003-4542-2728; | en_US |
| dc.description.abstract | Smoke is the first visible sign of forest fires and the most commonly used feature for early forest fire detection using data from cameras. However, one of the natural challenges is the dense fog that appears in forests, which decreases the detection accuracy or triggers false alarms. In this study, we propose a system with a deep neural network-based image preprocessing approach that significantly improves the smoke segmentation and classification performance by dehazing the camera view. Our experimental results provide that the classification models reach 99% F1 score for the correct classification of smoke when the image dehazing method is used before the training process. The smoke localization system achieves 60% average precision when the mask region-based convolutional neural network is used with the ResNet101-FPN backbone. The proposed approach can be utilized for all smoke segmentation frameworks to increase fire detection performance. (c) 2022 SPIE and IS&T | en_US |
| dc.description.sponsorship | Turkish Higher Education Council [100/2000] | en_US |
| dc.description.sponsorship | The first author, Merve Tas, was supported by the Turkish Higher Education Council's 100/2000 Scholarship Program. | en_US |
| dc.identifier.doi | 10.1117/1.JEI.31.5.053033 | |
| dc.identifier.issn | 1017-9909 | |
| dc.identifier.issn | 1560-229X | |
| dc.identifier.scopus | 2-s2.0-85163811871 | |
| dc.identifier.uri | https://doi.org/10.1117/1.JEI.31.5.053033 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3411 | |
| dc.language.iso | en | en_US |
| dc.publisher | SPIE - Society of Photo-Optical Instrumentation Engineers | en_US |
| dc.relation.ispartof | Journal of Electronic Imaging | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Convolutional Neural Networks | en_US |
| dc.subject | Forest Fire Detection | en_US |
| dc.subject | Image Dehazing | en_US |
| dc.subject | Smoke Detection and Segmentation | en_US |
| dc.title | Camera-Based Wildfire Smoke Detection for Foggy Environments | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Tasdemir, Kasim/0000-0003-4542-2728 | |
| gdc.author.scopusid | 59203624500 | |
| gdc.author.scopusid | 57201385985 | |
| gdc.author.scopusid | 35783957400 | |
| gdc.author.scopusid | 7003852510 | |
| gdc.author.scopusid | 26538758900 | |
| gdc.author.wosid | Tasdemir, Kasim/Aga-4286-2022 | |
| gdc.author.wosid | Taş, Merve/Hgv-0853-2022 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Tas, Merve] Abdullah Gul Univ, Grad Sch Engn & Nat Sci, Dept Elect & Comp Engn, Kayseri, Turkey; [Tas, Merve; Aydin, Zafer; Tasdemir, Kasim] Abdullah Gul Univ, Artificial Intelligence Res Grp AGU AI Res Grp, Kayseri, Turkey; [Tas, Yusuf] Erciyes Univ, Grad Sch Nat Appl Sci, Kayseri, Turkey; [Balki, Oguzhan] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA USA; [Aydin, Zafer; Tasdemir, Kasim] Abdullah Gul Univ, Sch Engn, Dept Comp Engn, Kayseri, Turkey | en_US |
| gdc.description.issue | 5 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.volume | 31 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q4 | |
| gdc.identifier.openalex | W4307640445 | |
| gdc.identifier.wos | WOS:000877897300063 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 3.0 | |
| gdc.oaire.influence | 2.6628062E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 4.199531E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.73272502 | |
| gdc.openalex.normalizedpercentile | 0.66 | |
| gdc.opencitations.count | 3 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 4 | |
| gdc.scopus.citedcount | 4 | |
| gdc.virtual.author | Aydın, Zafer | |
| gdc.wos.citedcount | 4 | |
| relation.isAuthorOfPublication | a26c06af-eae3-407c-a21a-128459fa4d2f | |
| relation.isAuthorOfPublication.latestForDiscovery | a26c06af-eae3-407c-a21a-128459fa4d2f | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
