Machine Learning-Based Intrusion Detection for Achieving Cybersecurity in Smart Grids Using IEC 61850 Goose Messages
| dc.contributor.author | Ustun, Taha Selim | |
| dc.contributor.author | Hussain, S. M. Suhail | |
| dc.contributor.author | Ulutas, Ahsen | |
| dc.contributor.author | Onen, Ahmet | |
| dc.contributor.author | Roomi, Muhammad M. | |
| dc.contributor.author | Mashima, Daisuke | |
| dc.date.accessioned | 2025-09-25T10:50:32Z | |
| dc.date.available | 2025-09-25T10:50:32Z | |
| dc.date.issued | 2021 | |
| dc.description | Musthafa Roomi, Dr. Muhammad/0000-0002-4761-1736; Ustun, Taha Selim/0000-0002-2413-8421; Ulutas, Ahsen/0000-0002-7715-3246; Onen, Ahmet/0000-0001-7086-5112; Hussain, S. M. Suhail/0000-0002-7779-8140 | en_US |
| dc.description.abstract | Increased connectivity is required to implement novel coordination and control schemes. IEC 61850-based communication solutions have become popular due to many reasons-object-oriented modeling capability, interoperable connectivity and strong communication protocols, to name a few. However, communication infrastructure is not well-equipped with cybersecurity mechanisms for secure operation. Unlike online banking systems that have been running such security systems for decades, smart grid cybersecurity is an emerging field. To achieve security at all levels, operational technology-based security is also needed. To address this need, this paper develops an intrusion detection system for smart grids utilizing IEC 61850's Generic Object-Oriented Substation Event (GOOSE) messages. The system is developed with machine learning and is able to monitor the communication traffic of a given power system and distinguish normal events from abnormal ones, i.e., attacks. The designed system is implemented and tested with a realistic IEC 61850 GOOSE message dataset under symmetric and asymmetric fault conditions in the power system. The results show that the proposed system can successfully distinguish normal power system events from cyberattacks with high accuracy. This ensures that smart grids have intrusion detection in addition to cybersecurity features attached to exchanged messages. | en_US |
| dc.description.sponsorship | Ministry of Energy, Transportation and Industry, METI, Japan | en_US |
| dc.description.sponsorship | This work was supported by the Ministry of Energy, Transportation and Industry, METI, Japan. | en_US |
| dc.identifier.doi | 10.3390/sym13050826 | |
| dc.identifier.issn | 2073-8994 | |
| dc.identifier.scopus | 2-s2.0-85106583791 | |
| dc.identifier.uri | https://doi.org/10.3390/sym13050826 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4159 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | Symmetry-Basel | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Smart Grid Cybersecurity | en_US |
| dc.subject | Goose Message Security | en_US |
| dc.subject | Iec 62351 | en_US |
| dc.subject | Intrusion Detection | en_US |
| dc.subject | Artificial Intelligence | en_US |
| dc.title | Machine Learning-Based Intrusion Detection for Achieving Cybersecurity in Smart Grids Using IEC 61850 Goose Messages | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Musthafa Roomi, Dr. Muhammad/0000-0002-4761-1736 | |
| gdc.author.id | Ustun, Taha Selim/0000-0002-2413-8421 | |
| gdc.author.id | Ulutas, Ahsen/0000-0002-7715-3246 | |
| gdc.author.id | Onen, Ahmet/0000-0001-7086-5112 | |
| gdc.author.id | Hussain, S. M. Suhail/0000-0002-7779-8140 | |
| gdc.author.scopusid | 43761679200 | |
| gdc.author.scopusid | 22035146400 | |
| gdc.author.scopusid | 57205427963 | |
| gdc.author.scopusid | 55511777700 | |
| gdc.author.scopusid | 56430672500 | |
| gdc.author.scopusid | 24824759500 | |
| gdc.author.wosid | Mashima, Daisuke/Ahc-2788-2022 | |
| gdc.author.wosid | Musthafa Roomi, Dr. Muhammad/Aam-9769-2021 | |
| gdc.author.wosid | Ulutas, Ahsen/Aes-6407-2022 | |
| gdc.author.wosid | Ulutaş, Ahsen/Aes-6407-2022 | |
| gdc.author.wosid | Roomi, Muhammad/Aam-9769-2021 | |
| gdc.author.wosid | Ustun, Taha/M-5481-2018 | |
| gdc.author.wosid | Hussain, S. M. Suhail/O-3552-2016 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C3 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | true | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Ustun, Taha Selim] Natl Inst Adv Ind Sci & Technol, AIST FREA, Fukushima Renewable Energy Inst, Koriyama, Fukushima 9630298, Japan; [Hussain, S. M. Suhail] Natl Univ Singapore, Sch Comp, Dept Comp Sci, Singapore 637551, Singapore; [Ulutas, Ahsen] Necmettin Erbakan Univ, Dept Elect & Elect Engn, TR-42090 Konya, Turkey; [Onen, Ahmet] Abdullah Gul Univ, Dept Elect & Elect Engn, TR-38170 Kayseri, Turkey; [Roomi, Muhammad M.; Mashima, Daisuke] Univ Illinois, Illinois Singapore Pte Ltd, Adv Digital Sci Ctr, Singapore 138602, Singapore | en_US |
| gdc.description.issue | 5 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 826 | |
| gdc.description.volume | 13 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W3161881368 | |
| gdc.identifier.wos | WOS:000654610200001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.downloads | 66 | |
| gdc.oaire.impulse | 46.0 | |
| gdc.oaire.influence | 6.7319905E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Artificial intelligence | |
| gdc.oaire.keywords | Smart grid cybersecurity | |
| gdc.oaire.keywords | IEC 62351 | |
| gdc.oaire.keywords | smart grid cybersecurity; GOOSE message security; IEC 62351; intrusion detection; artificial intelligence | |
| gdc.oaire.keywords | intrusion detection | |
| gdc.oaire.keywords | artificial intelligence | |
| gdc.oaire.keywords | 004 | |
| gdc.oaire.keywords | 620 | |
| gdc.oaire.keywords | smart grid cybersecurity | |
| gdc.oaire.keywords | Intrusion detection | |
| gdc.oaire.keywords | GOOSE message security | |
| gdc.oaire.popularity | 5.1050783E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.views | 122 | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 7.17297708 | |
| gdc.openalex.normalizedpercentile | 0.98 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 48 | |
| gdc.plumx.crossrefcites | 59 | |
| gdc.plumx.mendeley | 97 | |
| gdc.plumx.scopuscites | 65 | |
| gdc.scopus.citedcount | 65 | |
| gdc.virtual.author | Önen, Ahmet | |
| gdc.wos.citedcount | 50 | |
| relation.isAuthorOfPublication | 0af75b8c-6d1f-435f-8af7-6b752056503e | |
| relation.isAuthorOfPublication.latestForDiscovery | 0af75b8c-6d1f-435f-8af7-6b752056503e | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
