Machine Learning-Based Intrusion Detection for Achieving Cybersecurity in Smart Grids Using IEC 61850 Goose Messages

dc.contributor.author Ustun, Taha Selim
dc.contributor.author Hussain, S. M. Suhail
dc.contributor.author Ulutas, Ahsen
dc.contributor.author Onen, Ahmet
dc.contributor.author Roomi, Muhammad M.
dc.contributor.author Mashima, Daisuke
dc.date.accessioned 2025-09-25T10:50:32Z
dc.date.available 2025-09-25T10:50:32Z
dc.date.issued 2021
dc.description Musthafa Roomi, Dr. Muhammad/0000-0002-4761-1736; Ustun, Taha Selim/0000-0002-2413-8421; Ulutas, Ahsen/0000-0002-7715-3246; Onen, Ahmet/0000-0001-7086-5112; Hussain, S. M. Suhail/0000-0002-7779-8140 en_US
dc.description.abstract Increased connectivity is required to implement novel coordination and control schemes. IEC 61850-based communication solutions have become popular due to many reasons-object-oriented modeling capability, interoperable connectivity and strong communication protocols, to name a few. However, communication infrastructure is not well-equipped with cybersecurity mechanisms for secure operation. Unlike online banking systems that have been running such security systems for decades, smart grid cybersecurity is an emerging field. To achieve security at all levels, operational technology-based security is also needed. To address this need, this paper develops an intrusion detection system for smart grids utilizing IEC 61850's Generic Object-Oriented Substation Event (GOOSE) messages. The system is developed with machine learning and is able to monitor the communication traffic of a given power system and distinguish normal events from abnormal ones, i.e., attacks. The designed system is implemented and tested with a realistic IEC 61850 GOOSE message dataset under symmetric and asymmetric fault conditions in the power system. The results show that the proposed system can successfully distinguish normal power system events from cyberattacks with high accuracy. This ensures that smart grids have intrusion detection in addition to cybersecurity features attached to exchanged messages. en_US
dc.description.sponsorship Ministry of Energy, Transportation and Industry, METI, Japan en_US
dc.description.sponsorship This work was supported by the Ministry of Energy, Transportation and Industry, METI, Japan. en_US
dc.identifier.doi 10.3390/sym13050826
dc.identifier.issn 2073-8994
dc.identifier.scopus 2-s2.0-85106583791
dc.identifier.uri https://doi.org/10.3390/sym13050826
dc.identifier.uri https://hdl.handle.net/20.500.12573/4159
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Symmetry-Basel en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Smart Grid Cybersecurity en_US
dc.subject Goose Message Security en_US
dc.subject Iec 62351 en_US
dc.subject Intrusion Detection en_US
dc.subject Artificial Intelligence en_US
dc.title Machine Learning-Based Intrusion Detection for Achieving Cybersecurity in Smart Grids Using IEC 61850 Goose Messages en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Musthafa Roomi, Dr. Muhammad/0000-0002-4761-1736
gdc.author.id Ustun, Taha Selim/0000-0002-2413-8421
gdc.author.id Ulutas, Ahsen/0000-0002-7715-3246
gdc.author.id Onen, Ahmet/0000-0001-7086-5112
gdc.author.id Hussain, S. M. Suhail/0000-0002-7779-8140
gdc.author.scopusid 43761679200
gdc.author.scopusid 22035146400
gdc.author.scopusid 57205427963
gdc.author.scopusid 55511777700
gdc.author.scopusid 56430672500
gdc.author.scopusid 24824759500
gdc.author.wosid Mashima, Daisuke/Ahc-2788-2022
gdc.author.wosid Musthafa Roomi, Dr. Muhammad/Aam-9769-2021
gdc.author.wosid Ulutas, Ahsen/Aes-6407-2022
gdc.author.wosid Ulutaş, Ahsen/Aes-6407-2022
gdc.author.wosid Roomi, Muhammad/Aam-9769-2021
gdc.author.wosid Ustun, Taha/M-5481-2018
gdc.author.wosid Hussain, S. M. Suhail/O-3552-2016
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial true
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Ustun, Taha Selim] Natl Inst Adv Ind Sci & Technol, AIST FREA, Fukushima Renewable Energy Inst, Koriyama, Fukushima 9630298, Japan; [Hussain, S. M. Suhail] Natl Univ Singapore, Sch Comp, Dept Comp Sci, Singapore 637551, Singapore; [Ulutas, Ahsen] Necmettin Erbakan Univ, Dept Elect & Elect Engn, TR-42090 Konya, Turkey; [Onen, Ahmet] Abdullah Gul Univ, Dept Elect & Elect Engn, TR-38170 Kayseri, Turkey; [Roomi, Muhammad M.; Mashima, Daisuke] Univ Illinois, Illinois Singapore Pte Ltd, Adv Digital Sci Ctr, Singapore 138602, Singapore en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 826
gdc.description.volume 13 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3161881368
gdc.identifier.wos WOS:000654610200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 66
gdc.oaire.impulse 46.0
gdc.oaire.influence 6.7319905E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Artificial intelligence
gdc.oaire.keywords Smart grid cybersecurity
gdc.oaire.keywords IEC 62351
gdc.oaire.keywords smart grid cybersecurity; GOOSE message security; IEC 62351; intrusion detection; artificial intelligence
gdc.oaire.keywords intrusion detection
gdc.oaire.keywords artificial intelligence
gdc.oaire.keywords 004
gdc.oaire.keywords 620
gdc.oaire.keywords smart grid cybersecurity
gdc.oaire.keywords Intrusion detection
gdc.oaire.keywords GOOSE message security
gdc.oaire.popularity 5.1050783E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.views 122
gdc.openalex.collaboration International
gdc.openalex.fwci 7.17297708
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 48
gdc.plumx.crossrefcites 59
gdc.plumx.mendeley 97
gdc.plumx.scopuscites 65
gdc.scopus.citedcount 65
gdc.virtual.author Önen, Ahmet
gdc.wos.citedcount 50
relation.isAuthorOfPublication 0af75b8c-6d1f-435f-8af7-6b752056503e
relation.isAuthorOfPublication.latestForDiscovery 0af75b8c-6d1f-435f-8af7-6b752056503e
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files