Highly Stable, Near-Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero-Nanoplatelets Enabled by ZnS-Shell Hot-Injection Growth
No Thumbnail Available
Date
2019
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley-VCH Verlag GmbH
Open Access Color
BRONZE
Green Open Access
Yes
OpenAIRE Downloads
100
OpenAIRE Views
106
Publicly Funded
No
Abstract
Colloidal semiconductor nanoplatelets (NPLs) offer important benefits in nanocrystal optoelectronics with their unique excitonic properties. For NPLs, colloidal atomic layer deposition (c-ALD) provides the ability to produce their core/shell heterostructures. However, as c-ALD takes place at room temperature, this technique allows for only limited stability and low quantum yield. Here, highly stable, near-unity efficiency CdSe/ZnS NPLs are shown using hot-injection (HI) shell growth performed at 573 K, enabling routinely reproducible quantum yields up to 98%. These CdSe/ZnS HI-shell hetero-NPLs fully recover their initial photoluminescence (PL) intensity in solution after a heating cycle from 300 to 525 K under inert gas atmosphere, and their solid films exhibit 100% recovery of their initial PL intensity after a heating cycle up to 400 K under ambient atmosphere, by far outperforming the control group of c-ALD shell-coated CdSe/ZnS NPLs, which can sustain only 20% of their PL. In optical gain measurements, these core/HI-shell NPLs exhibit ultralow gain thresholds reaching approximate to 7 mu J cm(-2). Despite being annealed at 500 K, these ZnS-HI-shell NPLs possess low gain thresholds as small as 25 mu J cm(-2). These findings indicate that the proposed 573 K HI-shell-grown CdSe/ZnS NPLs hold great promise for extraordinarily high performance in nanocrystal optoelectronics.
Description
Kelestemur, Yusuf/0000-0003-1616-2728; Demir, Hilmi Volkan/0000-0003-1793-112X; Gungor, Kivanc/0000-0002-4628-0197; Erdem, Onur/0000-0003-2212-965X; Mutlugun, Evren/0000-0003-3715-5594
Keywords
Core/Shell Nanocrystals, Hot-Injection Growth, Nanoplatelets, Optical Gain, Semiconductor Nanocrystals, Stability, :Materials [Engineering], hot-injection growth, Core/shell nanocrystals, Nanoplatelets, nanoplatelets, Optical gain, stability, semiconductor nanocrystals, core/shell nanocrystals, Core-shell Quantum Wells, Hot‐injection growth, Stability, Semiconductor nanocrystals, Colloidal Nanocrystals, optical gain
Turkish CoHE Thesis Center URL
Fields of Science
02 engineering and technology, 0210 nano-technology
Citation
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
78
Source
Small
Volume
15
Issue
8
Start Page
End Page
PlumX Metrics
Citations
CrossRef : 61
Scopus : 85
PubMed : 13
Captures
Mendeley Readers : 84
SCOPUS™ Citations
85
checked on Feb 03, 2026
Web of Science™ Citations
88
checked on Feb 03, 2026
Page Views
1
checked on Feb 03, 2026
Google Scholar™


