Sliding Window and Filterbank Utilization on Riemannian Geometry

dc.contributor.author Altindis, Fatih
dc.contributor.author Yilmaz, Bulent
dc.date.accessioned 2025-09-25T10:57:19Z
dc.date.available 2025-09-25T10:57:19Z
dc.date.issued 2022
dc.description The IEEE Systems, Man, and Cybernetics Society (SMC) en_US
dc.description.abstract Riemannian geometry-based signal processing approaches on EEG signals provides similar decoding performance compared to state-of-the-art methods. However, Riemannian geometry framework requires predefine EEG signal epoch that is to be used in the analysis. Sliding window approach that operates in Riemannian geometry proposed to enable use of EEG signals without constrained by the record length. Decoding performance of tangent space mapping was increased more than 6% in overall accuracy compared the previous study's results. Instead of using single band-pass filter, utilization of filterbank is proposed to increase decoding performance. Distance based Riemannian classifier's overall performance were increased by 5% compared to standard Riemannian geometry approach. © 2022 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/INISTA55318.2022.9894208
dc.identifier.isbn 9781665498104
dc.identifier.scopus 2-s2.0-85139595477
dc.identifier.uri https://doi.org/10.1109/INISTA55318.2022.9894208
dc.identifier.uri https://hdl.handle.net/20.500.12573/4643
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 16th International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2022 -- Biarritz -- 182947 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Brain-Computer Interface en_US
dc.subject EEG en_US
dc.subject Riemannian Geometry en_US
dc.subject Tangent Space Mapping en_US
dc.subject Biomedical Signal Processing en_US
dc.subject Decoding en_US
dc.subject Filter Banks en_US
dc.subject Geometry en_US
dc.subject Mapping en_US
dc.subject Decoding Performance en_US
dc.subject EEG Signals en_US
dc.subject Processing Approach en_US
dc.subject Riemannian Geometry en_US
dc.subject Signal-Processing en_US
dc.subject Sliding Window en_US
dc.subject Space-Mapping en_US
dc.subject State-of-The-Art Methods en_US
dc.subject Tangent Space en_US
dc.subject Tangent Space Mapping en_US
dc.subject Brain Computer Interface en_US
dc.title Sliding Window and Filterbank Utilization on Riemannian Geometry en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57193720164
gdc.author.scopusid 57189925966
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Altindis] Fatih, Department of Electrical & Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Yilmaz] Bulent, Department of Electrical & Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 5
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4297035745
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.5746125E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.4205923E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0206 medical engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.32104183
gdc.openalex.normalizedpercentile 0.5
gdc.opencitations.count 2
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Altındiş, Fatih
relation.isAuthorOfPublication 22cc2238-8fd3-4783-aa91-d8f69c83ece6
relation.isAuthorOfPublication.latestForDiscovery 22cc2238-8fd3-4783-aa91-d8f69c83ece6
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication f22f14aa-23ad-40e4-bc25-b9705d4051ed
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files