Comparison of Disease Specific Sub-Network Identification Programs

dc.contributor.author Dedeturk, Beyhan Adanur
dc.contributor.author Bakir-Güngör, Burcu
dc.date.accessioned 2025-09-25T10:42:56Z
dc.date.available 2025-09-25T10:42:56Z
dc.date.issued 2018
dc.description.abstract Active sub-network search aims to identify a group of interconnected genes in a protein-protein interaction network that contains most of the disease-associated genes. In recent years, to address active sub-network search problem, various algorithms and programs are developed. In this study, performances of disease specific sub-network identification programs are compared. The same input dataset is run in jActiveModules, ActiveSubnetworkGA, CytoHubba, ClusterViz, MCODE, CytoMOBAS, PathFindR, PINBPA and PEWCC programs. Then, functional enrichment analysis is applied on obtained sub-networks. Finally, they are compared according to the results of GO Enrichment Analysis. In addition to these, work performances, features and requirements of programs are compared. © 2019 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/UBMK.2018.8566663
dc.identifier.isbn 9781538678930
dc.identifier.scopus 2-s2.0-85060608294
dc.identifier.uri https://doi.org/10.1109/UBMK.2018.8566663
dc.identifier.uri https://hdl.handle.net/20.500.12573/3497
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 3rd International Conference on Computer Science and Engineering, UBMK 2018 -- Sarajevo -- 143560 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Active Sub-Network Search en_US
dc.subject Disease Associated Modules en_US
dc.subject Protein-Protein Interaction Networks en_US
dc.subject Genes en_US
dc.subject Functional Enrichment Analysis en_US
dc.subject Protein-Protein Interaction Networks en_US
dc.subject Sub-Network en_US
dc.subject Work Performance en_US
dc.subject Proteins en_US
dc.title Comparison of Disease Specific Sub-Network Identification Programs en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57299063900
gdc.author.scopusid 25932029800
gdc.author.wosid Adanur Dedeturk, Beyhan/Gxv-6964-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Dedeturk] Beyhan Adanur, Department of Electrical & Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Bakir-Güngör] Burcu, Department of Electrical & Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 280 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 275 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W2904483978
gdc.identifier.wos WOS:000459847400052
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.0783119E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.34
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Adanur Dedetürk, Beyhan
gdc.virtual.author Güngör, Burcu
gdc.wos.citedcount 0
relation.isAuthorOfPublication baae61f3-31e8-4d3a-8a77-f0d1114afa1e
relation.isAuthorOfPublication e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isAuthorOfPublication.latestForDiscovery baae61f3-31e8-4d3a-8a77-f0d1114afa1e
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files