Comparative Analysis of Dimensionality Reduction Techniques for Cybersecurity in the SwaT Dataset

dc.contributor.author Bozdal, Mehmet
dc.contributor.author Ileri, Kadir
dc.contributor.author Ozkahraman, Ali
dc.date.accessioned 2025-09-25T10:42:48Z
dc.date.available 2025-09-25T10:42:48Z
dc.date.issued 2024
dc.description Ileri, Kadir/0000-0002-5041-6165; Bozdal, Mehmet/0000-0002-2081-7101 en_US
dc.description.abstract The Internet of Things (IoT) has revolutionized the functionality and efficiency of distributed cyber-physical systems, such as city-wide water treatment systems. However, the increased connectivity also exposes these systems to cybersecurity threats. This research presents a novel approach for securing the Secure Water Treatment (SWaT) dataset using a 1D Convolutional Neural Network (CNN) model enhanced with a Gated Recurrent Unit (GRU). The proposed method outperforms existing methods by achieving 99.68% accuracy and an F1 score of 98.69%. Additionally, the paper explores dimensionality reduction methods, including Autoencoders, Generalized Eigenvalue Decomposition (GED), and Principal Component Analysis (PCA). The research findings highlight the importance of balancing dimensionality reduction with the need for accurate intrusion detection. It is found that PCA provided better performance compared to the other techniques, as reducing the input dimension by 90.2% resulted in only a 2.8% and 2.6% decrease in the accuracy and F1 score, respectively. This study contributes to the field by addressing the critical need for robust cybersecurity measures in IoT-enabled water treatment systems, while also considering the practical trade-off between dimensionality reduction and intrusion detection accuracy. en_US
dc.identifier.doi 10.1007/s11227-023-05511-w
dc.identifier.issn 0920-8542
dc.identifier.issn 1573-0484
dc.identifier.scopus 2-s2.0-85164109369
dc.identifier.uri https://doi.org/10.1007/s11227-023-05511-w
dc.identifier.uri https://hdl.handle.net/20.500.12573/3483
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Journal of Supercomputing en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Intrusion Detection en_US
dc.subject Secure Water Treatment Dataset en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Dimensionality Reduction en_US
dc.subject Gated Recurrent Unit en_US
dc.title Comparative Analysis of Dimensionality Reduction Techniques for Cybersecurity in the SwaT Dataset en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ileri, Kadir/0000-0002-5041-6165
gdc.author.id Bozdal, Mehmet/0000-0002-2081-7101
gdc.author.scopusid 57208000471
gdc.author.scopusid 57250688300
gdc.author.scopusid 58316382500
gdc.author.wosid Ileri, Kadir/Hpg-4568-2023
gdc.author.wosid Bozdal, Mehmet/Aas-7971-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Bozdal, Mehmet] Abdullah Gul Univ, Elect & Elect Engn Dept, Kayseri, Turkiye; [Ileri, Kadir] Bandirma Onyedi Eylul Univ, Elect & Elect Engn Dept, Balikesir, Turkiye; [Ozkahraman, Ali] Istanbul Tech Univ, Elect & Commun Engn Dept, Istanbul, Turkiye en_US
gdc.description.endpage 1079 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1059 en_US
gdc.description.volume 80 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4383621805
gdc.identifier.wos WOS:001024255800002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.downloads 97
gdc.oaire.impulse 13.0
gdc.oaire.influence 3.2422853E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Intrusion detection
gdc.oaire.keywords Convolutional neural networks
gdc.oaire.keywords Secure water treatment dataset
gdc.oaire.keywords Dimensionality reduction
gdc.oaire.keywords Gated recurrent unit
gdc.oaire.popularity 1.199662E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 84
gdc.openalex.collaboration National
gdc.openalex.fwci 6.15373209
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 3
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 19
gdc.plumx.scopuscites 14
gdc.scopus.citedcount 14
gdc.virtual.author Bozdal, Mehmet
gdc.wos.citedcount 13
relation.isAuthorOfPublication 7e840ecc-f832-4645-98dc-2a1679104c7d
relation.isAuthorOfPublication.latestForDiscovery 7e840ecc-f832-4645-98dc-2a1679104c7d
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication f22f14aa-23ad-40e4-bc25-b9705d4051ed
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files