Deep Learning Based Semantic Segmentation and Quantification for MRD Biochip Images

dc.contributor.author Celebi, Fatma
dc.contributor.author Tasdemir, Kasim
dc.contributor.author Icoz, Kutay
dc.date.accessioned 2025-09-25T10:43:32Z
dc.date.available 2025-09-25T10:43:32Z
dc.date.issued 2022
dc.description Celebi, Fatma/0000-0001-7472-8297; Icoz, Kutay/0000-0002-0947-6166 en_US
dc.description.abstract Microfluidic platforms offer prominent advantages for the early detection of cancer and monitoring the patient response to therapy. Numerous microfluidic platforms have been developed for capturing and quantifying the tumor cells integrating several readout methods. Earlier, we have developed a microfluidic platform (MRD Biochip) to capture and quantify leukemia cells. This is the first study which employs a deep learning-based segmentation to the MRD Biochip images consisting of leukemic cells, immunomagnetic beads and micropads. Implementing deep learning algorithms has two main contributions; firstly, the quantification performance of the readout method is improved for the unbalanced dataset. Secondly, unlike the previous classical computer vision -based method, it does not require any manual tuning of the parameters which resulted in a more generalized model against variations of objects in the image in terms of size, color, and noise. As a result of these benefits, the proposed system is promising for providing real time analysis for microfluidic systems. Moreover, we compare different deep learning based semantic segmentation algorithms on the image dataset which are acquired from the real patient samples using a bright-field microscopy. Without cell staining, hyper-parameter optimized, and modified U-Net semantic segmentation algorithm yields 98.7% global accuracy, 86.1% mean IoU, 92.2% mean precision, 92.2% mean recall and 92.2% mean F-1 score measure on the patient dataset. After segmentation, quantification result yields 89% average precision, 97% average recall on test images. By applying the deep learning algorithms, we are able to improve our previous results that employed conventional computer vision methods. en_US
dc.description.sponsorship [115E020] en_US
dc.description.sponsorship Acknowledgment Authors acknowledge T?BI?TAK (Project No: 115E020) for the financial support and Dr. Ekrem ?nal for collecting the patient samples. All authors declare that there is no conflict of interest. en_US
dc.identifier.doi 10.1016/j.bspc.2022.103783
dc.identifier.issn 1746-8094
dc.identifier.issn 1746-8108
dc.identifier.scopus 2-s2.0-85129848313
dc.identifier.uri https://doi.org/10.1016/j.bspc.2022.103783
dc.identifier.uri https://hdl.handle.net/20.500.12573/3566
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.ispartof Biomedical Signal Processing and Control en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep Learning en_US
dc.subject Semantic Segmentation en_US
dc.subject Transfer Learning en_US
dc.subject Mrd Biochip en_US
dc.subject Microfluidics en_US
dc.subject Bright-Field Microscopy en_US
dc.title Deep Learning Based Semantic Segmentation and Quantification for MRD Biochip Images en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Celebi, Fatma/0000-0001-7472-8297
gdc.author.id Icoz, Kutay/0000-0002-0947-6166
gdc.author.scopusid 57677898500
gdc.author.scopusid 26538758900
gdc.author.scopusid 24801985000
gdc.author.wosid Tasdemir, Kasim/Aga-4286-2022
gdc.author.wosid Icoz, Kutay/Abi-3903-2020
gdc.author.wosid Icoz, Kutay/J-2063-2015
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [celebi, Fatma; Icoz, Kutay] Abdullah Gul Univ, Elect & Elect Engn Dept, BioMINDS Bio Micro Nano Devices & Sensors Lab, TR-38080 Kayseri, Turkey; [Icoz, Kutay] Abdullah Gul Univ, Bioengn Dept, TR-38080 Kayseri, Turkey; [celebi, Fatma; Tasdemir, Kasim; Icoz, Kutay] Abdullah Gul Univ, Comp Engn Dept, TR-38080 Kayseri, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 103783
gdc.description.volume 77 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4229028494
gdc.identifier.wos WOS:000803613800006
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.8556737E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 8.2913045E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 0303 health sciences
gdc.oaire.sciencefields 03 medical and health sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 2.18977904
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 4
gdc.plumx.crossrefcites 9
gdc.plumx.mendeley 17
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.virtual.author Çelebi, Fatma
gdc.virtual.author İçöz, Kutay
gdc.wos.citedcount 9
relation.isAuthorOfPublication 9d052ee2-9414-494c-a18a-a04d825b9472
relation.isAuthorOfPublication 23d8466c-761d-4ddb-9a4d-e4feacbf60a9
relation.isAuthorOfPublication.latestForDiscovery 9d052ee2-9414-494c-a18a-a04d825b9472
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files