Investigation of the Free-Radical Polymerization of Vinyl Monomers Using Horseradish Peroxidase (HRP) Nanoflowers
No Thumbnail Available
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Open Access Color
HYBRID
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In this study, we report the production of flower-shaped HRP-Cu2+ hybrid nano biocatalyst (HRP-Cu2+ HNF) from the complexation between horseradish peroxidase (HRP) enzyme and Cu2+ ions, and investigate catalytic activity and stability of the obtained nanoflowers on the polymerization of some vinyl monomers (styrene, methylmethacrylate, acrylamide and N-isopropylacrylamide). Polymerizations of these monomers, except water soluble acrylamide, were accomplished under emulsion conditions using cationic, anionic and non-ionic surfactants in the presence of hydrogen peroxide (H2O2) and 2,4-pentanedione mediator. Optimum polymerizations were achieved under the conditions of non-ionic surfactant (tween 40) used. HRP-Cu2+ HNF mediated polymerizations resulted in very high yields and molecular weights (Mn) of the polymers. Optimum polymerization of styrene with 84% of yield (Mn = 319 kDa) was accomplished at room temperature. However, the highest polymerization yields for acrylamide (96%, Mn = 171 kDa) and N-isopropylacrylamide (85%, Mn = 185 kDa) was achieved at 70 degrees C. Similarly, optimum polymerization of methylmethacrylate was accomplished with 84% of yield (Mn = 190 kDa) at 60 degrees C. While free-HRP loses its catalytic activity at 60 degrees C and above temperatures, HRP-Cu2+ HNF showed very high catalytic activity and stability even at 70 degrees C. Increasing activity and stability of hybrid nanoflowers provide significant advantages for both scientific and industrial applications.
Description
Gokturk, Ersen/0000-0001-6742-2847
ORCID
Keywords
Horseradish Peroxidase, Polymerization, Styrene, Methylmethacrylate, Acrylamide, N-Isopropylacrylamide
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q2
Scopus Q
Q2

OpenCitations Citation Count
N/A
Source
Polymer Bulletin
Volume
82
Issue
8
Start Page
3131
End Page
3144
PlumX Metrics
Citations
Scopus : 1
Captures
Mendeley Readers : 1
SCOPUS™ Citations
1
checked on Feb 03, 2026
Web of Science™ Citations
1
checked on Feb 03, 2026
Page Views
1
checked on Feb 03, 2026
Google Scholar™


