Object Weight Perception in Motor Imagery Using Fourier-Based Synchrosqueezing Transform and Regularized Common Spatial Patterns
| dc.contributor.author | Karakullukcu, Nedime | |
| dc.contributor.author | Altindis, Fatih | |
| dc.contributor.author | Yilmaz, Bulent | |
| dc.date.accessioned | 2025-09-25T10:53:33Z | |
| dc.date.available | 2025-09-25T10:53:33Z | |
| dc.date.issued | 2024 | |
| dc.description | Karakullukcu, Nedime/0000-0002-1698-3705; Yilmaz, Bulent/0000-0003-2954-1217; | en_US |
| dc.description.abstract | This study addresses the challenge faced by individuals with upper-limb prostheses in regulating grip force and adapting movements to different object weights. Despite limited exploration, this research pioneers the use of EEG to estimate object weight perception in the context of upper-limb prostheses. Investigating neural correlates in this population provides valuable insights and aids the development of neurofeedback-based strategies for weight perception. Our objective is to identify EEG features predicting the weight perception of held objects. Employing Fourier-based synchrosqueezing transform (FSST) and regularized Common Spatial Patterns (CSP) features, we classify motor imagery waves representing three weight categories (light, medium, heavy). Subjects perform actual motor tasks before imagery sessions, and our approach integrates EEG features of both movements to train subject-specific machine learning models. Results reveal that FSST- singular value decomposition (SVD) features for medium and heavy objects are most distinctive. Achieving up to 90% accuracy, spatial features demonstrate effective classification of motor imagery for different weights. Unlike weight prediction studies, our focus is on visual perception and imagination of object weights, enhancing prosthetic hand system preconditioning. Binary classification surpasses 70% accuracy in predicting object weights, uniquely utilizing actual movement data for CSP algorithm regularization coefficient estimation. | en_US |
| dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TBIdot;TAK) | en_US |
| dc.description.sponsorship | No Statement Available | en_US |
| dc.identifier.doi | 10.1109/ACCESS.2024.3386554 | |
| dc.identifier.issn | 2169-3536 | |
| dc.identifier.scopus | 2-s2.0-85190173321 | |
| dc.identifier.uri | https://doi.org/10.1109/ACCESS.2024.3386554 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4304 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
| dc.relation.ispartof | IEEE Access | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Brain-Computer Interfaces | en_US |
| dc.subject | Fourier Transforms | en_US |
| dc.subject | Brain Computer Interfaces | en_US |
| dc.subject | Common Spatial Pattern (CSP) | en_US |
| dc.subject | EEG Signal Processing | en_US |
| dc.subject | Fourier-Based Synchrosqueezing Transform (FSST) | en_US |
| dc.subject | Weight Perception | en_US |
| dc.title | Object Weight Perception in Motor Imagery Using Fourier-Based Synchrosqueezing Transform and Regularized Common Spatial Patterns | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Karakullukcu, Nedime/0000-0002-1698-3705 | |
| gdc.author.id | Yilmaz, Bulent/0000-0003-2954-1217 | |
| gdc.author.scopusid | 57362790000 | |
| gdc.author.scopusid | 57193720164 | |
| gdc.author.scopusid | 57189925966 | |
| gdc.author.wosid | Karakullukcu, Nedime/X-2586-2019 | |
| gdc.author.wosid | Altindis, Fatih/Aag-4770-2021 | |
| gdc.author.wosid | Yılmaz, Bülent/Acr-8602-2022 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Karakullukcu, Nedime; Altindis, Fatih] Abdullah Gul Univ, Elect & Comp Engn Dept, TR-38080 Kayseri, Turkiye; [Yilmaz, Bulent] Gulf Univ Sci & Technol, Elect Engn Dept, Hawally 32093, Kuwait; [Altindis, Fatih; Yilmaz, Bulent] Abdullah Gul Univ, Elect Elect Engn Dept, TR-38080 Kayseri, Turkiye | en_US |
| gdc.description.endpage | 52989 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 52978 | en_US |
| gdc.description.volume | 12 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4394627262 | |
| gdc.identifier.wos | WOS:001204859000001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.6141398E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Brain computer interfaces | |
| gdc.oaire.keywords | EEG signal processing | |
| gdc.oaire.keywords | weight perception | |
| gdc.oaire.keywords | common spatial pattern (CSP) | |
| gdc.oaire.keywords | Electrical engineering. Electronics. Nuclear engineering | |
| gdc.oaire.keywords | Fourier-based synchrosqueezing transform (FSST) | |
| gdc.oaire.keywords | TK1-9971 | |
| gdc.oaire.popularity | 3.2653282E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0302 clinical medicine | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 2.10840169 | |
| gdc.openalex.normalizedpercentile | 0.75 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 16 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.scopus.citedcount | 3 | |
| gdc.virtual.author | Altındiş, Fatih | |
| gdc.wos.citedcount | 2 | |
| relation.isAuthorOfPublication | 22cc2238-8fd3-4783-aa91-d8f69c83ece6 | |
| relation.isAuthorOfPublication.latestForDiscovery | 22cc2238-8fd3-4783-aa91-d8f69c83ece6 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication | f22f14aa-23ad-40e4-bc25-b9705d4051ed | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
