Object Weight Perception in Motor Imagery Using Fourier-Based Synchrosqueezing Transform and Regularized Common Spatial Patterns

dc.contributor.author Karakullukcu, Nedime
dc.contributor.author Altindis, Fatih
dc.contributor.author Yilmaz, Bulent
dc.date.accessioned 2025-09-25T10:53:33Z
dc.date.available 2025-09-25T10:53:33Z
dc.date.issued 2024
dc.description Karakullukcu, Nedime/0000-0002-1698-3705; Yilmaz, Bulent/0000-0003-2954-1217; en_US
dc.description.abstract This study addresses the challenge faced by individuals with upper-limb prostheses in regulating grip force and adapting movements to different object weights. Despite limited exploration, this research pioneers the use of EEG to estimate object weight perception in the context of upper-limb prostheses. Investigating neural correlates in this population provides valuable insights and aids the development of neurofeedback-based strategies for weight perception. Our objective is to identify EEG features predicting the weight perception of held objects. Employing Fourier-based synchrosqueezing transform (FSST) and regularized Common Spatial Patterns (CSP) features, we classify motor imagery waves representing three weight categories (light, medium, heavy). Subjects perform actual motor tasks before imagery sessions, and our approach integrates EEG features of both movements to train subject-specific machine learning models. Results reveal that FSST- singular value decomposition (SVD) features for medium and heavy objects are most distinctive. Achieving up to 90% accuracy, spatial features demonstrate effective classification of motor imagery for different weights. Unlike weight prediction studies, our focus is on visual perception and imagination of object weights, enhancing prosthetic hand system preconditioning. Binary classification surpasses 70% accuracy in predicting object weights, uniquely utilizing actual movement data for CSP algorithm regularization coefficient estimation. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TBIdot;TAK) en_US
dc.description.sponsorship No Statement Available en_US
dc.identifier.doi 10.1109/ACCESS.2024.3386554
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85190173321
dc.identifier.uri https://doi.org/10.1109/ACCESS.2024.3386554
dc.identifier.uri https://hdl.handle.net/20.500.12573/4304
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof IEEE Access en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Brain-Computer Interfaces en_US
dc.subject Fourier Transforms en_US
dc.subject Brain Computer Interfaces en_US
dc.subject Common Spatial Pattern (CSP) en_US
dc.subject EEG Signal Processing en_US
dc.subject Fourier-Based Synchrosqueezing Transform (FSST) en_US
dc.subject Weight Perception en_US
dc.title Object Weight Perception in Motor Imagery Using Fourier-Based Synchrosqueezing Transform and Regularized Common Spatial Patterns en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Karakullukcu, Nedime/0000-0002-1698-3705
gdc.author.id Yilmaz, Bulent/0000-0003-2954-1217
gdc.author.scopusid 57362790000
gdc.author.scopusid 57193720164
gdc.author.scopusid 57189925966
gdc.author.wosid Karakullukcu, Nedime/X-2586-2019
gdc.author.wosid Altindis, Fatih/Aag-4770-2021
gdc.author.wosid Yılmaz, Bülent/Acr-8602-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Karakullukcu, Nedime; Altindis, Fatih] Abdullah Gul Univ, Elect & Comp Engn Dept, TR-38080 Kayseri, Turkiye; [Yilmaz, Bulent] Gulf Univ Sci & Technol, Elect Engn Dept, Hawally 32093, Kuwait; [Altindis, Fatih; Yilmaz, Bulent] Abdullah Gul Univ, Elect Elect Engn Dept, TR-38080 Kayseri, Turkiye en_US
gdc.description.endpage 52989 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 52978 en_US
gdc.description.volume 12 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4394627262
gdc.identifier.wos WOS:001204859000001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6141398E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Brain computer interfaces
gdc.oaire.keywords EEG signal processing
gdc.oaire.keywords weight perception
gdc.oaire.keywords common spatial pattern (CSP)
gdc.oaire.keywords Electrical engineering. Electronics. Nuclear engineering
gdc.oaire.keywords Fourier-based synchrosqueezing transform (FSST)
gdc.oaire.keywords TK1-9971
gdc.oaire.popularity 3.2653282E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 2.10840169
gdc.openalex.normalizedpercentile 0.75
gdc.opencitations.count 0
gdc.plumx.mendeley 16
gdc.plumx.newscount 1
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.virtual.author Altındiş, Fatih
gdc.wos.citedcount 2
relation.isAuthorOfPublication 22cc2238-8fd3-4783-aa91-d8f69c83ece6
relation.isAuthorOfPublication.latestForDiscovery 22cc2238-8fd3-4783-aa91-d8f69c83ece6
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication f22f14aa-23ad-40e4-bc25-b9705d4051ed
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files