Combining Classifiers for Protein Secondary Structure Prediction

dc.contributor.author Aydin, Zafer
dc.contributor.author Uzut, Ommu Gulsum
dc.date.accessioned 2025-09-25T10:42:44Z
dc.date.available 2025-09-25T10:42:44Z
dc.date.issued 2017
dc.description.abstract Protein secondary structure prediction is an important step in estimating the three dimensional structure of proteins. Among the many methods developed for predicting structural properties of proteins, hybrid classifiers and ensembles that combine predictions from several models are shown to improve the accuracy rates. In this paper, we train, optimize and combine a support vector machine, a deep convolutional neural field and a random forest in the second stage of a hybrid classifier for protein secondary structure prediction. We demonstrate that the overall accuracy of the proposed ensemble is comparable to the success rates of the state-of-the-art methods in the most difficult prediction setting and combining the selected models have the potential to further improve the accuracy of the base learners. en_US
dc.description.sponsorship TUBITAK National Young Researchers Career Award [113E550, 3501] en_US
dc.description.sponsorship All computations were performed on TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources). This work is supported by grant 113E550 from 3501 TUBITAK National Young Researchers Career Award. en_US
dc.identifier.doi 10.1109/CICN.2017.9
dc.identifier.isbn 9781509050017
dc.identifier.issn 2375-8244
dc.identifier.scopus 2-s2.0-85050877368
dc.identifier.uri https://doi.org/10.1109/CICN.2017.9
dc.identifier.uri https://hdl.handle.net/20.500.12573/3478
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 9th International Conference on Computational Intelligence and Communication Networks (CICN) -- SEP 16-17, 2017 -- Final Int Univ, Girne, CYPRUS en_US
dc.relation.ispartofseries International Confernce on Computational Intelligence and Communication Networks
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bioinformatics en_US
dc.subject Protein Secondary Structure Prediction en_US
dc.subject Hybrid Classifiers en_US
dc.subject Ensemble Methods en_US
dc.subject Deep Learning en_US
dc.title Combining Classifiers for Protein Secondary Structure Prediction en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Aydın, Zafer
gdc.author.scopusid 7003852510
gdc.author.scopusid 57203183341
gdc.author.wosid Gulsum, Ummu/Juv-2983-2023
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Aydin, Zafer] Abdullah Gul Univ, Kayseri, Turkey; [Uzut, Ommu Gulsum] Mus Alparslan Univ, Mus, Turkey en_US
gdc.description.endpage 33 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 29 en_US
gdc.description.volume 2018-January en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.wos WOS:000432249700007
gdc.opencitations.count 0
gdc.scopus.citedcount 2
gdc.wos.citedcount 3
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files