Network Anomaly Detection Using Deep Autoencoder and Parallel Artificial Bee Colony Algorithm-Trained Neural Network

dc.contributor.author Hacilar, Hilal
dc.contributor.author Dedeturk, Bilge Kagan
dc.contributor.author Bakir-Gungor, Burcu
dc.contributor.author Gungor, Vehbi Cagri
dc.date.accessioned 2025-09-25T10:53:06Z
dc.date.available 2025-09-25T10:53:06Z
dc.date.issued 2024
dc.description Hacilar, Hilal/0000-0002-5811-6722 en_US
dc.description.abstract Cyberattacks are increasingly becoming more complex, which makes intrusion detection extremely difficult. Several intrusion detection approaches have been developed in the literature and utilized to tackle computer security intrusions. Implementing machine learning and deep learning models for network intrusion detection has been a topic of active research in cybersecurity. In this study, artificial neural networks (ANNs), a type of machine learning algorithm, are employed to determine optimal network weight sets during the training phase. Conventional training algorithms, such as back- propagation, may encounter challenges in optimization due to being entrapped within local minima during the iterative optimization process; global search strategies can be slow at locating global minima, and they may suffer from a low detection rate. In the ANN training, the Artificial Bee Colony (ABC) algorithm enables the avoidance of local minimum solutions by conducting a high-performance search in the solution space but it needs some modifications. To address these challenges, this work suggests a Deep Autoencoder (DAE)-based, vectorized, and parallelized ABC algorithm for training feed-forward artificial neural networks, which is tested on the UNSW-NB15 and NF-UNSW-NB15-v2 datasets. Our experimental results demonstrate that the proposed DAE-based parallel ABC-ANN outperforms existing metaheuristics, showing notable improvements in network intrusion detection. The experimental results reveal a notable improvement in network intrusion detection through this proposed approach, exhibiting an increase in detection rate (DR) by 0.76 to 0.81 and a reduction in false alarm rate (FAR) by 0.016 to 0.005 compared to the ANN-BP algorithm on the UNSWNB15 dataset. Furthermore, there is a reduction in FAR by 0.006 to 0.0003 compared to the ANN-BP algorithm on the NF-UNSW-NB15-v2 dataset. These findings underscore the effectiveness of our proposed approach in enhancing network security against network intrusions. en_US
dc.identifier.doi 10.7717/peerj-cs.2333
dc.identifier.issn 2376-5992
dc.identifier.issn 2376-5992
dc.identifier.scopus 2-s2.0-85206803167
dc.identifier.uri https://doi.org/10.7717/peerj-cs.2333
dc.identifier.uri https://hdl.handle.net/20.500.12573/4269
dc.language.iso en en_US
dc.publisher PeerJ Inc en_US
dc.relation.ispartof PeerJ Computer Science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Artificial Neural Network en_US
dc.subject Artificial Bee Colony en_US
dc.subject Metaheuristics en_US
dc.subject Deep Autoencoder en_US
dc.subject Network Intrusion Detection Systems (Nids) en_US
dc.subject Anomaly Detection en_US
dc.subject Unsw-Nb15 en_US
dc.subject Swarm Intelligence en_US
dc.subject Nf-Unsw-Nb15-V2 en_US
dc.title Network Anomaly Detection Using Deep Autoencoder and Parallel Artificial Bee Colony Algorithm-Trained Neural Network en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Hacilar, Hilal/0000-0002-5811-6722
gdc.author.scopusid 57205573679
gdc.author.scopusid 57215770858
gdc.author.scopusid 25932029800
gdc.author.scopusid 10739803300
gdc.author.wosid Hacılar, Hilal/Hgu-9217-2022
gdc.author.wosid Dedeturk, Bilge/Aau-6579-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial true
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Hacilar, Hilal; Bakir-Gungor, Burcu] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkiye; [Dedeturk, Bilge Kagan] Erciyes Univ, Dept Software Engn, Kayseri, Turkiye; [Gungor, Vehbi Cagri] Turkcell, Istanbul, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage e2333
gdc.description.volume 10 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4403231530
gdc.identifier.wos WOS:001334382700003
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 20
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.7145277E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Anomaly detection, UNSW-NB15
gdc.oaire.keywords Artificial neural network
gdc.oaire.keywords Network intrusion detection systems (NIDS)
gdc.oaire.keywords NF-UNSW-NB15-v2
gdc.oaire.keywords Deep Autoencoder
gdc.oaire.keywords Electronic computers. Computer science
gdc.oaire.keywords Artificial bee colony
gdc.oaire.keywords Swarm intelligence
gdc.oaire.keywords Metaheuristics
gdc.oaire.keywords Anomaly detection
gdc.oaire.keywords QA75.5-76.95
gdc.oaire.popularity 6.1405285E-9
gdc.oaire.publicfunded false
gdc.oaire.views 88
gdc.openalex.collaboration National
gdc.openalex.fwci 5.0211966
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 21
gdc.plumx.newscount 1
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Hacılar, Hilal
gdc.virtual.author Güngör, Burcu
gdc.wos.citedcount 4
relation.isAuthorOfPublication ac461e50-4a71-4e82-b19b-0ae02f5d683a
relation.isAuthorOfPublication e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isAuthorOfPublication.latestForDiscovery ac461e50-4a71-4e82-b19b-0ae02f5d683a
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files