Temporal Logic-Based Intrusion Detection for Securing Connected Vehicles
| dc.contributor.author | Bozdal, Mehmet | |
| dc.date.accessioned | 2025-09-25T10:58:40Z | |
| dc.date.available | 2025-09-25T10:58:40Z | |
| dc.date.issued | 2024 | |
| dc.description | Bozdal, Mehmet/0000-0002-2081-7101 | en_US |
| dc.description.abstract | Ensuring the security and integrity of in-vehicle communication networks (IVCNs) is paramount. The increasing connectivity of vehicles exposes them to unprecedented security vulnerabilities, necessitating innovative methodologies to safeguard against cyberattacks and unauthorized access. This research presents a novel approach to enhance IVCN security through the deployment of a Signal Temporal Logic (STL)-based Intrusion Detection System (IDS). Considering the limited resources of Electronic Control Units (ECUs), this approach offers an adaptive and lightweight solution that addresses the unique challenges posed by the dynamic nature of vehicular networks. The proposed STL-based IDS effectively detects a broad spectrum of intrusions while maintaining acceptable overhead for resource-constrained ECUs, thanks to its distributed architecture. Comprehensive experimental evaluations demonstrate significant performance improvements in detecting Denial of Service (DoS) attacks, achieving the highest accuracy of 0.996 and recall of 1.000. The system also excels in detecting fuzzy attacks, with the highest accuracy of 0.996. | en_US |
| dc.description.sponsorship | Scientific and Technological Research Council of Turkiye (TUBITAK) [1919B022400407] | en_US |
| dc.description.sponsorship | The author gratefully acknowledges the financial support provided by Scientific and Technological Research Council of Turkiye (TUBITAK) through the travel grant awarded under application number 1919B022400407. | en_US |
| dc.identifier.doi | 10.1007/978-3-031-73344-4_48 | |
| dc.identifier.isbn | 9783031733437 | |
| dc.identifier.isbn | 9783031733444 | |
| dc.identifier.issn | 2367-3370 | |
| dc.identifier.issn | 2367-3389 | |
| dc.identifier.scopus | 2-s2.0-85207579070 | |
| dc.identifier.uri | https://doi.org/10.1007/978-3-031-73344-4_48 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4755 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer International Publishing AG | en_US |
| dc.relation.ispartof | Lecture Notes in Networks and Systems | en_US |
| dc.relation.ispartofseries | Lecture Notes in Networks and Systems | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Intrusion Detection | en_US |
| dc.subject | Vehicle Security | en_US |
| dc.subject | Controller Area Network | en_US |
| dc.title | Temporal Logic-Based Intrusion Detection for Securing Connected Vehicles | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Bozdal, Mehmet/0000-0002-2081-7101 | |
| gdc.author.institutional | Bozdal, Mehmet | |
| gdc.author.scopusid | 57208000471 | |
| gdc.author.wosid | Bozdal, Mehmet/Aas-7971-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Bozdal, Mehmet] Abdullah Gul Univ, Kayseri, Turkiye | en_US |
| gdc.description.endpage | 570 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q4 | |
| gdc.description.startpage | 561 | en_US |
| gdc.description.volume | 1170 | en_US |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4403439630 | |
| gdc.identifier.wos | WOS:001489973100048 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.3737945E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.48 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Bozdal, Mehmet | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | 7e840ecc-f832-4645-98dc-2a1679104c7d | |
| relation.isAuthorOfPublication.latestForDiscovery | 7e840ecc-f832-4645-98dc-2a1679104c7d | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication | f22f14aa-23ad-40e4-bc25-b9705d4051ed | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
