Deep Learning Based Employee Attrition Prediction

dc.contributor.author Gurler, Kerem
dc.contributor.author Pak, Burcu Kuleli
dc.contributor.author Gungor, Vehbi Cagri
dc.date.accessioned 2025-09-25T10:43:30Z
dc.date.available 2025-09-25T10:43:30Z
dc.date.issued 2023
dc.description Kuleli Pak, Burcu/0000-0001-6881-6792 en_US
dc.description.abstract Employee attrition is a critical issue for the business sectors as leaving employees cause various types of difficulties for the company. Some studies exist on examining the reasons for this phenomenon and predicting it with Machine Learning algorithms. In this paper, the causes for employee attrition is explored in three datasets, one of them being our own novel dataset and others obtained from Kaggle. Employee attrition was predicted with multiple Machine Learning and Deep Learning algorithms with feature selection and hyperparameter optimization and their performances are evaluated with multiple metrics. Deep Learning methods showed superior performances in all of the datasets we explored. SMOTE Tomek Links were utilized to oversample minority classes and effectively tackle the problem of class imbalance. Best performing methods were Deep Random Forest on HR Dataset from Kaggle and Neural Network for IBM and Adesso datasets with F1 scores of 0.972, 0.642 and 0.853, respectively. en_US
dc.identifier.doi 10.1007/978-3-031-34111-3_6
dc.identifier.isbn 9783031341137
dc.identifier.isbn 9783031341113
dc.identifier.isbn 9783031341106
dc.identifier.issn 1868-4238
dc.identifier.issn 1868-422X
dc.identifier.scopus 2-s2.0-85163370687
dc.identifier.uri https://doi.org/10.1007/978-3-031-34111-3_6
dc.identifier.uri https://hdl.handle.net/20.500.12573/3564
dc.language.iso en en_US
dc.publisher Springer International Publishing AG en_US
dc.relation.ispartof IFIP Advances in Information and Communication Technology en_US
dc.relation.ispartofseries IFIP Advances in Information and Communication Technology
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Machine Learning en_US
dc.subject Deep Learning en_US
dc.subject Employee Attrition en_US
dc.subject Data Imbalance en_US
dc.title Deep Learning Based Employee Attrition Prediction en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Kuleli Pak, Burcu/0000-0001-6881-6792
gdc.author.scopusid 57982253500
gdc.author.scopusid 57211331191
gdc.author.scopusid 10739803300
gdc.author.wosid Kuleli Pak, Burcu/Lxv-7553-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Gurler, Kerem; Pak, Burcu Kuleli] Adesso Turkey, Istanbul, Turkiye; [Gungor, Vehbi Cagri] Abdullah Gul Univ, Kayseri, Turkiye en_US
gdc.description.endpage 68 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 57 en_US
gdc.description.volume 675 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4378761571
gdc.identifier.wos WOS:001289288100006
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.741036E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.369444E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 6.9768002
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 2
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.wos.citedcount 0
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files