Deep-Learning Detection of Open-Apex Teeth on Panoramic Radiographs Using YOLO Models

dc.contributor.author Edik, Merve
dc.contributor.author Celebi, Fatma
dc.contributor.author Cukurluoglu, Aykagan
dc.date.accessioned 2026-01-20T15:32:23Z
dc.date.available 2026-01-20T15:32:23Z
dc.date.issued 2025
dc.description.abstract ObjectivesThe use of deep learning in detecting teeth with open apices can prevent the need for additional radiographs for patients. The presented study aims to detect open-apex teeth using You Only Look Once (YOLO)-based deep learning models and compare these models.MethodsA total of 966 panoramic radiographs were included in the study. Open-apex teeth in panoramic radiographs were labeled. During the labeling process, they were divided into 6 classes in the maxilla and mandible, namely incisors, premolars, and molars. AI models YOLOv3, YOLOv4, and YOLOv5 were used. To evaluate the performance of the three detection models, both overall and separately for each class in the test dataset, precision, recall, average precision (mAP), and F1 score were calculated.ResultsYOLOv4 achieved the highest overall performance with a mean average precision (mAP) of 87.84% at IoU (Intersection over Union) 0.5 (mAP@0.5), followed by YOLOv5 with 85.6%, and YOLOv3 with 84.46%. Regarding recall, YOLOv4 also led with 90%, while both YOLOv3 and YOLOv5 reached 89%. Moreover, the F1 score was the highest for YOLOv4 (0.87), followed by YOLOv3 (0.86) and YOLOv5 (0.85).ConclusionsIn this study, YOLOv3, YOLOv4, and YOLOv5 were evaluated for the detection of open-apex teeth, and their mAP, recall, and F1 scores exceeded 84%. Deep learning-based systems can provide faster and more accurate results in the detection of open-apex teeth. This may help reduce the need for additional radiographs from patients and aid dentists by saving time. en_US
dc.identifier.doi 10.1007/s11282-025-00884-5
dc.identifier.issn 0911-6028
dc.identifier.issn 1613-9674
dc.identifier.scopus 2-s2.0-105025745814
dc.identifier.uri https://doi.org/10.1007/s11282-025-00884-5
dc.identifier.uri https://hdl.handle.net/20.500.12573/5751
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Oral Radiology en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Open Apex en_US
dc.subject Panoramic Radiograph en_US
dc.subject Deep Learning en_US
dc.subject Artificial Intelligence en_US
dc.subject YOLO en_US
dc.title Deep-Learning Detection of Open-Apex Teeth on Panoramic Radiographs Using YOLO Models en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57218857110
gdc.author.scopusid 57677898500
gdc.author.scopusid 58971694300
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül Üniversitesi en_US
gdc.description.departmenttemp [Edik, Merve; Cukurluoglu, Aykagan] Erciyes Univ, Fac Dent, Dept Oral & Maxillofacial Radiol, Kayseri, Turkiye; [Celebi, Fatma] Abdullah Gul Univ, Dept Comp Engn, Sumer Campus,Erkilet Blvd, TR-38080 Kayseri, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W7116968231
gdc.identifier.pmid 41432878
gdc.identifier.wos WOS:001645190500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.popularity 2.7494755E-9
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.75
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Çelebi, Fatma
gdc.wos.citedcount 0
relation.isAuthorOfPublication 9d052ee2-9414-494c-a18a-a04d825b9472
relation.isAuthorOfPublication.latestForDiscovery 9d052ee2-9414-494c-a18a-a04d825b9472
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 52f507ab-f278-4a1f-824c-44da2a86bd51

Files