Linear Vs. Non-Linear Embedding Methods in Recommendation Systems
| dc.contributor.author | Gurler, Kerem | |
| dc.contributor.author | Cos¸kun, Mustafa | |
| dc.contributor.author | Karagenc, Safak | |
| dc.contributor.author | Orun, Gokhan | |
| dc.contributor.author | Kuleli Pak, Burcu Kuleli | |
| dc.contributor.author | Güngör, Vehbi Çağrı | |
| dc.date.accessioned | 2025-09-25T10:50:03Z | |
| dc.date.available | 2025-09-25T10:50:03Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Predicting customer interest in items is very crucial in direct marketing as it can potentially boost sales. Data mining techniques are developed to predict which items a particular user might be interested in based on their purchase history or explicit feedback in form of ratings or comments. Recently, non-linear and linear methods have been developed for this purpose. In this study, we applied Neighborhood based Collaborative Filtering (CF), Matrix Factorization (MF), Singular Value Decomposition (SVD), Neural Graph CF (NGCF) and Light Graph Convolutional Network (LightGCN) on explicit user product rating data which is acquired from the online gaming and mobile entertainment platform called HADI. We compared the results of node embedding methods in terms of Precision@k, Recall@k and NDCG@k values. SVD and LightGCN showed the best test performance and SVD was significantly superior to LightGCN in terms of training speed. To further increase predictive performance of SVD, we have applied classification with Logistic Regression and Deep Random Forest on user and item embeddings created by the SVD. © 2022 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.1109/ASYU56188.2022.9925389 | |
| dc.identifier.isbn | 9781665488945 | |
| dc.identifier.scopus | 2-s2.0-85142668942 | |
| dc.identifier.uri | https://doi.org/10.1109/ASYU56188.2022.9925389 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4126 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | -- 2022 Innovations in Intelligent Systems and Applications Conference, ASYU 2022 -- Antalya; Akdeniz University -- 183936 | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Link Prediction | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Node Embedding | en_US |
| dc.subject | Recommendation Systems | en_US |
| dc.subject | Collaborative Filtering | en_US |
| dc.subject | Data Mining | en_US |
| dc.subject | Decision Trees | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Embeddings | en_US |
| dc.subject | Forecasting | en_US |
| dc.subject | Matrix Factorization | en_US |
| dc.subject | Recommender Systems | en_US |
| dc.subject | Sales | en_US |
| dc.subject | Convolutional Networks | en_US |
| dc.subject | Direct Marketing | en_US |
| dc.subject | Embedding Method | en_US |
| dc.subject | Linear Embedding | en_US |
| dc.subject | Link Prediction | en_US |
| dc.subject | Machine-Learning | en_US |
| dc.subject | Node Embedding | en_US |
| dc.subject | Non Linear | en_US |
| dc.subject | Singular Value Decomposition | en_US |
| dc.title | Linear Vs. Non-Linear Embedding Methods in Recommendation Systems | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57982253500 | |
| gdc.author.scopusid | 57189031203 | |
| gdc.author.scopusid | 57982962000 | |
| gdc.author.scopusid | 57983661100 | |
| gdc.author.scopusid | 57211331191 | |
| gdc.author.scopusid | 10739803300 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Gurler] Kerem, Huawei Turkey Research and Development Center, Istanbul, Turkey; [Cos¸kun] Mustafa, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Karagenc] Safak, Huawei Turkey Research and Development Center, Istanbul, Turkey; [Orun] Gokhan, Hadi Hadi, Istanbul, Turkey; [Kuleli Pak] Burcu Kuleli, Huawei Turkey Research and Development Center, Istanbul, Turkey; [Güngör] Vehbi Çağrı, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey | en_US |
| gdc.description.endpage | 6 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1 | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4312634767 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5349236E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.8548826E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.42 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
