Linear Vs. Non-Linear Embedding Methods in Recommendation Systems

dc.contributor.author Gurler, Kerem
dc.contributor.author Cos¸kun, Mustafa
dc.contributor.author Karagenc, Safak
dc.contributor.author Orun, Gokhan
dc.contributor.author Kuleli Pak, Burcu Kuleli
dc.contributor.author Güngör, Vehbi Çağrı
dc.date.accessioned 2025-09-25T10:50:03Z
dc.date.available 2025-09-25T10:50:03Z
dc.date.issued 2022
dc.description.abstract Predicting customer interest in items is very crucial in direct marketing as it can potentially boost sales. Data mining techniques are developed to predict which items a particular user might be interested in based on their purchase history or explicit feedback in form of ratings or comments. Recently, non-linear and linear methods have been developed for this purpose. In this study, we applied Neighborhood based Collaborative Filtering (CF), Matrix Factorization (MF), Singular Value Decomposition (SVD), Neural Graph CF (NGCF) and Light Graph Convolutional Network (LightGCN) on explicit user product rating data which is acquired from the online gaming and mobile entertainment platform called HADI. We compared the results of node embedding methods in terms of Precision@k, Recall@k and NDCG@k values. SVD and LightGCN showed the best test performance and SVD was significantly superior to LightGCN in terms of training speed. To further increase predictive performance of SVD, we have applied classification with Logistic Regression and Deep Random Forest on user and item embeddings created by the SVD. © 2022 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/ASYU56188.2022.9925389
dc.identifier.isbn 9781665488945
dc.identifier.scopus 2-s2.0-85142668942
dc.identifier.uri https://doi.org/10.1109/ASYU56188.2022.9925389
dc.identifier.uri https://hdl.handle.net/20.500.12573/4126
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 2022 Innovations in Intelligent Systems and Applications Conference, ASYU 2022 -- Antalya; Akdeniz University -- 183936 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep Learning en_US
dc.subject Link Prediction en_US
dc.subject Machine Learning en_US
dc.subject Node Embedding en_US
dc.subject Recommendation Systems en_US
dc.subject Collaborative Filtering en_US
dc.subject Data Mining en_US
dc.subject Decision Trees en_US
dc.subject Deep Learning en_US
dc.subject Embeddings en_US
dc.subject Forecasting en_US
dc.subject Matrix Factorization en_US
dc.subject Recommender Systems en_US
dc.subject Sales en_US
dc.subject Convolutional Networks en_US
dc.subject Direct Marketing en_US
dc.subject Embedding Method en_US
dc.subject Linear Embedding en_US
dc.subject Link Prediction en_US
dc.subject Machine-Learning en_US
dc.subject Node Embedding en_US
dc.subject Non Linear en_US
dc.subject Singular Value Decomposition en_US
dc.title Linear Vs. Non-Linear Embedding Methods in Recommendation Systems en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57982253500
gdc.author.scopusid 57189031203
gdc.author.scopusid 57982962000
gdc.author.scopusid 57983661100
gdc.author.scopusid 57211331191
gdc.author.scopusid 10739803300
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Gurler] Kerem, Huawei Turkey Research and Development Center, Istanbul, Turkey; [Cos¸kun] Mustafa, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Karagenc] Safak, Huawei Turkey Research and Development Center, Istanbul, Turkey; [Orun] Gokhan, Hadi Hadi, Istanbul, Turkey; [Kuleli Pak] Burcu Kuleli, Huawei Turkey Research and Development Center, Istanbul, Turkey; [Güngör] Vehbi Çağrı, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 6
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4312634767
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.8548826E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.42
gdc.opencitations.count 0
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files