Beneficiation of Low-Grade Iron Ore Using a Dry-Roll Magnetic Separator and Its Modeling via Artificial Neural Network

dc.contributor.author Fariss, Abdourahman Hassan Brahim
dc.contributor.author Ibrahim, Ahmedaljaali Ibrahim Idrees
dc.contributor.author Ozdemir, Ali Can
dc.contributor.author Top, Soner
dc.contributor.author Kursunoglu, Sait
dc.contributor.author Altiner, Mahmut
dc.date.accessioned 2025-09-25T10:41:33Z
dc.date.available 2025-09-25T10:41:33Z
dc.date.issued 2025
dc.description Altiner, Mahmut/0000-0002-7428-5999; Kursunoglu, Sait/0000-0002-1680-5482; en_US
dc.description.abstract The beneficiation of low-grade iron ore (39.5% Fe-(T) grade) using a dry-roll magnetic separator was investigated. The ore was characterized using Mineral Liberation Analysis (MLA). It was determined that the ore was composed of iron oxide (goethite and hematite), quartz, chlorite, muscovite, plagioclase, and other minerals. The effect of particle size (PS, - 1 + 0.500 mm, - 0.500 + 0.300 mm, and - 0.300 + 0.125 mm), splitter position (SP, 43 degrees and 58 degrees), cleaning stage (CS, 1 and 2), conveyor speed (CoS, 3, 5, and 7 Hz), magnetic field strength (MFS, 0.2 T and 0.4 T) on the recovery of the magnetic product was investigated. Experimental results show that the product (- 1 + 0.500 mm) with the Fe-(T) grade of 67.67% can be obtained, but its recovery was not at an acceptable value (< 30%). Furthermore, the Fe-(T) grade of the product (- 0.500 + 0.300 and - 0.300 + 0.125 mm) could not reach satisfactory levels<bold>.</bold> The artificial neural network (ANN) method was conducted on the results of experimental studies. Three different training algorithms were employed for modeling, and their performance was assessed using statistical evaluation criteria. The results demonstrate that Bayesian Regularization (BR) algorithm exhibited better performance compared to others in predicting both Fe(T) grade and recovery rate during the testing phase. These findings support the notion that ANN algorithms can be a powerful modeling and prediction tool in the field of mineral processing. en_US
dc.description.sponsorship ukurova niversitesi [FYL-2022-14903]; Cukurova University en_US
dc.description.sponsorship The study was financially supported by Cukurova University (FYL-2022-14903). The authors express their gratitude to Associate Professor Yilmaz Kaya from the Department of Computer Engineering at Batman University for his valuable recommendations and comments. en_US
dc.identifier.doi 10.1007/s40831-025-01030-5
dc.identifier.issn 2199-3823
dc.identifier.issn 2199-3831
dc.identifier.scopus 2-s2.0-85218696408
dc.identifier.uri https://doi.org/10.1007/s40831-025-01030-5
dc.identifier.uri https://hdl.handle.net/20.500.12573/3365
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Journal of Sustainable Metallurgy en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Low-Grade Iron Ore en_US
dc.subject Magnetic Separation en_US
dc.subject Artificial Neural Network en_US
dc.subject Bayesian Regularization en_US
dc.title Beneficiation of Low-Grade Iron Ore Using a Dry-Roll Magnetic Separator and Its Modeling via Artificial Neural Network en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Altiner, Mahmut/0000-0002-7428-5999
gdc.author.id Kursunoglu, Sait/0000-0002-1680-5482
gdc.author.scopusid 59648580500
gdc.author.scopusid 58685737500
gdc.author.scopusid 55866475800
gdc.author.scopusid 57192650171
gdc.author.scopusid 55213526100
gdc.author.scopusid 56195594900
gdc.author.wosid Ozdemir, Ali/F-1957-2018
gdc.author.wosid Altiner, Mahmut/E-5044-2018
gdc.author.wosid Kursunoglu, Sait/Aba-9352-2020
gdc.author.wosid Top, Soner/H-3310-2015
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Fariss, Abdourahman Hassan Brahim; Ibrahim, Ahmedaljaali Ibrahim Idrees; Ozdemir, Ali Can; Altiner, Mahmut] Cukurova Univ, Dept Min Engn, TR-01330 Adana, Turkiye; [Top, Soner] Abdullah Gul Univ, Dept Engn Sci, TR-38100 Kayseri, Turkiye; [Kursunoglu, Sait] Batman Univ, Dept Petr & Nat Gas Engn, TR-72100 Batman, Turkiye en_US
gdc.description.endpage 1149 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1133 en_US
gdc.description.volume 11 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4407904127
gdc.identifier.wos WOS:001430373500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.8178666E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 5.0641855E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 9.72087934
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.virtual.author Top, Soner
gdc.virtual.author Kurşunoğlu, Sait
gdc.wos.citedcount 4
relation.isAuthorOfPublication a8917f24-106d-482d-b8fc-c4e710ba933c
relation.isAuthorOfPublication 787d9a02-9ec8-4f21-b860-b6b2e28b86d4
relation.isAuthorOfPublication.latestForDiscovery a8917f24-106d-482d-b8fc-c4e710ba933c
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 03adf3b0-3511-421e-b492-8fe188140fc0
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files