Context-Aware Beam Selection for IRS-Assisted Mmwave V2I Communications
| dc.contributor.author | Suarez del Valle, Ricardo | |
| dc.contributor.author | Kose, Abdulkadir | |
| dc.contributor.author | Lee, Haeyoung | |
| dc.date.accessioned | 2025-09-25T10:43:10Z | |
| dc.date.available | 2025-09-25T10:43:10Z | |
| dc.date.issued | 2025 | |
| dc.description | Kose, Abdulkadir/0000-0002-6877-1392; | en_US |
| dc.description.abstract | Millimeter wave (mmWave) technology, with its ultra-high bandwidth and low latency, holds significant promise for vehicle-to-everything (V2X) communications. However, it faces challenges such as high propagation losses and limited coverage in dense urban vehicular environments. Intelligent Reflecting Surfaces (IRSs) help address these issues by enhancing mmWave signal paths around obstacles, thereby maintaining reliable communication. This paper introduces a novel Contextual Multi-Armed Bandit (C-MAB) algorithm designed to dynamically adapt beam and IRS selections based on real-time environmental context. Simulation results demonstrate that the proposed C-MAB approach significantly improves link stability, doubling average beam sojourn times compared to traditional SNR-based strategies and standard MAB methods, and achieving gains of up to four times the performance in scenarios with IRS assistance. This approach enables optimized resource allocation and significantly improves coverage, data rate, and resource utilization compared to conventional methods. | en_US |
| dc.identifier.doi | 10.3390/s25133924 | |
| dc.identifier.issn | 1424-8220 | |
| dc.identifier.scopus | 2-s2.0-105010307707 | |
| dc.identifier.uri | https://doi.org/10.3390/s25133924 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3534 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | Sensors | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | mmWave | en_US |
| dc.subject | V2X | en_US |
| dc.subject | RIS | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Multi-Armed Bandit | en_US |
| dc.title | Context-Aware Beam Selection for IRS-Assisted Mmwave V2I Communications | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Kose, Abdulkadir/0000-0002-6877-1392 | |
| gdc.author.scopusid | 59986012700 | |
| gdc.author.scopusid | 56810884500 | |
| gdc.author.scopusid | 55382750600 | |
| gdc.author.wosid | Kose, Abdulkadir/T-9913-2019 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Suarez del Valle, Ricardo] Univ Surrey, Dept Elect Engn, Guildford GU2 7XH, England; [Kose, Abdulkadir] Abdullah Gul Univ, Dept Comp Engn, TR-38080 Kayseri, Turkiye; [Lee, Haeyoung] Univ Hertfordshire, Sch Phys Engn & Comp Sci, Hatfield AL10 9AB, England | en_US |
| gdc.description.issue | 13 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 3924 | |
| gdc.description.volume | 25 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4411609574 | |
| gdc.identifier.pmid | 40648181 | |
| gdc.identifier.wos | WOS:001527523300001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.6674234E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | mmWave | |
| gdc.oaire.keywords | machine learning | |
| gdc.oaire.keywords | Chemical technology | |
| gdc.oaire.keywords | V2X | |
| gdc.oaire.keywords | RIS | |
| gdc.oaire.keywords | TP1-1185 | |
| gdc.oaire.keywords | multi-armed bandit | |
| gdc.oaire.keywords | Article | |
| gdc.oaire.popularity | 3.5607928E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 2.02156574 | |
| gdc.openalex.normalizedpercentile | 0.77 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Köse, Abdulkadir | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | 42aba6b2-fe43-4ac7-9d7e-b936d6b2761f | |
| relation.isAuthorOfPublication.latestForDiscovery | 42aba6b2-fe43-4ac7-9d7e-b936d6b2761f | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
