An Approximate Spectral Clustering Ensemble for High Spatial Resolution Remote-Sensing Images

dc.contributor.author Tasdemir, Kadim
dc.contributor.author Moazzen, Yaser
dc.contributor.author Yildirim, Isa
dc.date.accessioned 2025-09-25T10:40:22Z
dc.date.available 2025-09-25T10:40:22Z
dc.date.issued 2015
dc.description Tasdemir, Kadim/0000-0001-7519-1911; Moazzen, Yaser/0000-0002-0093-5661 en_US
dc.description.abstract Unsupervised clustering of high spatial resolution remote-sensing images plays a significant role in detailed land-cover identification, especially for agricultural and environmental monitoring. A recently promising method is approximate spectral clustering (SC) which enables spectral partitioning for large datasets to extract clusters with distinct characteristics without a parametric model. It also facilitates the use of various information types via advanced similarity criteria. However, it requires an empirical selection of a similarity criterion optimal for the corresponding application. To address this challenge, we propose an approximate SC ensemble (ASCE2) which fuses partitionings obtained by different similarity representations. Contrary to existing spectral ensembles for remote-sensing applications, the proposed ASCE2 employs neural gas quantization instead of random sampling, advanced similarity criteria instead of traditional distance-based Gaussian kernel with different decay parameters, and a two-level ensemble. We evaluate the proposed ASCE2 with three measures (accuracy, adjusted Rand index, and normalized mutual information) using five remote-sensing images, two of which are commonly available. We apply the ASCE2 in two applications for agricultural monitoring: 1) land-cover identification to determine orchard fields using a WorldView-2 image (0.5-m spatial resolution) and 2) finding lands in good agricultural condition using multitemporal RapidEye images (5-m spatial resolution). Experimental results indicate a significant betterment of the resulting partitionings obtained by the proposed ensemble, with respect to the evaluation measures in these applications. en_US
dc.description.sponsorship TUBITAK Career [112E195]; EU FP7 Marie Curie Career Integration [IAM4MARS] en_US
dc.description.sponsorship This work was supported by TUBITAK Career under Grant 112E195. The work of author K. Tasdemir is also supported by EU FP7 Marie Curie Career Integration under Grant IAM4MARS. en_US
dc.identifier.doi 10.1109/JSTARS.2015.2424292
dc.identifier.issn 1939-1404
dc.identifier.issn 2151-1535
dc.identifier.scopus 2-s2.0-85027937378
dc.identifier.uri https://doi.org/10.1109/JSTARS.2015.2424292
dc.identifier.uri https://hdl.handle.net/20.500.12573/3244
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Approximate Spectral Clustering (SC) en_US
dc.subject Cluster Ensemble en_US
dc.subject Clustering en_US
dc.subject Geodesic Similarity en_US
dc.subject Land-Cover Identification en_US
dc.title An Approximate Spectral Clustering Ensemble for High Spatial Resolution Remote-Sensing Images en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Tasdemir, Kadim/0000-0001-7519-1911
gdc.author.id Moazzen, Yaser/0000-0002-0093-5661
gdc.author.scopusid 55915282200
gdc.author.scopusid 56246782400
gdc.author.scopusid 55254325700
gdc.author.wosid Tasdemir, Kadim/K-8385-2016
gdc.author.wosid Yildirim, Isa/Aah-9822-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Tasdemir, Kadim] Antalya Int Univ, Dept Comp Engn, TR-07190 Antalya, Turkey; [Moazzen, Yaser; Yildirim, Isa] Istanbul Tech Univ, TR-34469 Istanbul, Turkey; [Yildirim, Isa] Abdullah Gul Univ, TR-38080 Kayseri, Turkey; [Yildirim, Isa] Univ Illinois, Chicago, IL 60607 USA en_US
gdc.description.endpage 2004 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1996 en_US
gdc.description.volume 8 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W1503906615
gdc.identifier.wos WOS:000358569400012
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 3.2417744E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 2.9711418E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 3.94967177
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 13
gdc.plumx.crossrefcites 12
gdc.plumx.mendeley 18
gdc.plumx.scopuscites 19
gdc.scopus.citedcount 19
gdc.wos.citedcount 12
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files