IGPRED-Multitask: A Deep Learning Model to Predict Protein Secondary Structure, Torsion Angles and Solvent Accessibility
| dc.contributor.author | Gormez, Yasin | |
| dc.contributor.author | Aydin, Zafer | |
| dc.date.accessioned | 2025-09-25T10:48:39Z | |
| dc.date.available | 2025-09-25T10:48:39Z | |
| dc.date.issued | 2023 | |
| dc.description | Gormez, Yasin/0000-0001-8276-2030 | en_US |
| dc.description.abstract | Protein secondary structure, solvent accessibility and torsion angle predictions are preliminary steps to predict 3D structure of a protein. Deep learning approaches have achieved significant improvements in predicting various features of protein structure. In this study, IGPRED-Multitask, a deep learning model with multi task learning architecture based on deep inception network, graph convolutional network and a bidirectional long short-term memory is proposed. Moreover, hyper-parameters of the model are fine-tuned using Bayesian optimization, which is faster and more effective than grid search. The same benchmark test data sets as in the OPUS-TASS paper including TEST2016, TEST2018, CASP12, CASP13, CASPFM, HARD68, CAMEO93, CAMEO93_HARD, as well as the train and validation sets, are used for fair comparison with the literature. Statistically significant improvements are observed in secondary structure prediction on 4 datasets, in phi angle prediction on 2 datasets and in psi angel prediction on 3 datasets compared to the state-of-the-art methods. For solvent accessibility prediction, TEST2016 and TEST2018 datasets are used only to assess the performance of the proposed model. | en_US |
| dc.identifier.doi | 10.1109/TCBB.2022.3191395 | |
| dc.identifier.issn | 1545-5963 | |
| dc.identifier.issn | 1557-9964 | |
| dc.identifier.issn | 2374-0043 | |
| dc.identifier.scopus | 2-s2.0-85135223840 | |
| dc.identifier.uri | https://doi.org/10.1109/TCBB.2022.3191395 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3963 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE Computer Soc | en_US |
| dc.relation.ispartof | IEEE-Acm Transactions on Computational Biology and Bioinformatics | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Proteins | en_US |
| dc.subject | Predictive Models | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Solvents | en_US |
| dc.subject | Amino Acids | en_US |
| dc.subject | Recurrent Neural Networks | en_US |
| dc.subject | Feature Extraction | en_US |
| dc.subject | Feature Extraction Or Construction | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Protein Structure Predicition | en_US |
| dc.subject | Bioinformatics | en_US |
| dc.subject | Deep Learning | en_US |
| dc.title | IGPRED-Multitask: A Deep Learning Model to Predict Protein Secondary Structure, Torsion Angles and Solvent Accessibility | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Gormez, Yasin/0000-0001-8276-2030 | |
| gdc.author.scopusid | 57195222392 | |
| gdc.author.scopusid | 7003852510 | |
| gdc.author.wosid | Görmez, Yasin/Jef-8096-2023 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Gormez, Yasin] Sivas Cumhuriyet Univ, Management Informat Syst, TR-58050 Sivas, Turkiye; [Aydin, Zafer] Abdullah Gul Univ, Comp Engn Dept, TR-38080 Kayseri, Turkiye | en_US |
| gdc.description.endpage | 1113 | en_US |
| gdc.description.issue | 2 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 1104 | en_US |
| gdc.description.volume | 20 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4285820186 | |
| gdc.identifier.pmid | 35849663 | |
| gdc.identifier.wos | WOS:000965674700029 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 5.0 | |
| gdc.oaire.influence | 2.5997007E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Deep Learning | |
| gdc.oaire.keywords | Solvents | |
| gdc.oaire.keywords | Proteins | |
| gdc.oaire.keywords | Bayes Theorem | |
| gdc.oaire.keywords | Neural Networks, Computer | |
| gdc.oaire.popularity | 5.8394294E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0301 basic medicine | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0206 medical engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.86148411 | |
| gdc.openalex.normalizedpercentile | 0.64 | |
| gdc.opencitations.count | 6 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 12 | |
| gdc.plumx.pubmedcites | 5 | |
| gdc.plumx.scopuscites | 5 | |
| gdc.scopus.citedcount | 5 | |
| gdc.virtual.author | Aydın, Zafer | |
| gdc.wos.citedcount | 3 | |
| relation.isAuthorOfPublication | a26c06af-eae3-407c-a21a-128459fa4d2f | |
| relation.isAuthorOfPublication.latestForDiscovery | a26c06af-eae3-407c-a21a-128459fa4d2f | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
