IGPRED-Multitask: A Deep Learning Model to Predict Protein Secondary Structure, Torsion Angles and Solvent Accessibility

dc.contributor.author Gormez, Yasin
dc.contributor.author Aydin, Zafer
dc.date.accessioned 2025-09-25T10:48:39Z
dc.date.available 2025-09-25T10:48:39Z
dc.date.issued 2023
dc.description Gormez, Yasin/0000-0001-8276-2030 en_US
dc.description.abstract Protein secondary structure, solvent accessibility and torsion angle predictions are preliminary steps to predict 3D structure of a protein. Deep learning approaches have achieved significant improvements in predicting various features of protein structure. In this study, IGPRED-Multitask, a deep learning model with multi task learning architecture based on deep inception network, graph convolutional network and a bidirectional long short-term memory is proposed. Moreover, hyper-parameters of the model are fine-tuned using Bayesian optimization, which is faster and more effective than grid search. The same benchmark test data sets as in the OPUS-TASS paper including TEST2016, TEST2018, CASP12, CASP13, CASPFM, HARD68, CAMEO93, CAMEO93_HARD, as well as the train and validation sets, are used for fair comparison with the literature. Statistically significant improvements are observed in secondary structure prediction on 4 datasets, in phi angle prediction on 2 datasets and in psi angel prediction on 3 datasets compared to the state-of-the-art methods. For solvent accessibility prediction, TEST2016 and TEST2018 datasets are used only to assess the performance of the proposed model. en_US
dc.identifier.doi 10.1109/TCBB.2022.3191395
dc.identifier.issn 1545-5963
dc.identifier.issn 1557-9964
dc.identifier.issn 2374-0043
dc.identifier.scopus 2-s2.0-85135223840
dc.identifier.uri https://doi.org/10.1109/TCBB.2022.3191395
dc.identifier.uri https://hdl.handle.net/20.500.12573/3963
dc.language.iso en en_US
dc.publisher IEEE Computer Soc en_US
dc.relation.ispartof IEEE-Acm Transactions on Computational Biology and Bioinformatics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Proteins en_US
dc.subject Predictive Models en_US
dc.subject Deep Learning en_US
dc.subject Solvents en_US
dc.subject Amino Acids en_US
dc.subject Recurrent Neural Networks en_US
dc.subject Feature Extraction en_US
dc.subject Feature Extraction Or Construction en_US
dc.subject Machine Learning en_US
dc.subject Protein Structure Predicition en_US
dc.subject Bioinformatics en_US
dc.subject Deep Learning en_US
dc.title IGPRED-Multitask: A Deep Learning Model to Predict Protein Secondary Structure, Torsion Angles and Solvent Accessibility en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Gormez, Yasin/0000-0001-8276-2030
gdc.author.scopusid 57195222392
gdc.author.scopusid 7003852510
gdc.author.wosid Görmez, Yasin/Jef-8096-2023
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Gormez, Yasin] Sivas Cumhuriyet Univ, Management Informat Syst, TR-58050 Sivas, Turkiye; [Aydin, Zafer] Abdullah Gul Univ, Comp Engn Dept, TR-38080 Kayseri, Turkiye en_US
gdc.description.endpage 1113 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1104 en_US
gdc.description.volume 20 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4285820186
gdc.identifier.pmid 35849663
gdc.identifier.wos WOS:000965674700029
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.5997007E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Solvents
gdc.oaire.keywords Proteins
gdc.oaire.keywords Bayes Theorem
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.popularity 5.8394294E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0206 medical engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.86148411
gdc.openalex.normalizedpercentile 0.64
gdc.opencitations.count 6
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 12
gdc.plumx.pubmedcites 5
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.virtual.author Aydın, Zafer
gdc.wos.citedcount 3
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files