IGPRED: Combination of Convolutional Neural and Graph Convolutional Networks for Protein Secondary Structure Prediction

dc.contributor.author Gormez, Yasin
dc.contributor.author Sabzekar, Mostafa
dc.contributor.author Aydin, Zafer
dc.date.accessioned 2025-09-25T10:48:39Z
dc.date.available 2025-09-25T10:48:39Z
dc.date.issued 2021
dc.description Sabzekar, Mostafa/0000-0002-6886-1240; Gormez, Yasin/0000-0001-8276-2030; en_US
dc.description.abstract There is a close relationship between the tertiary structure and the function of a protein. One of the important steps to determine the tertiary structure is protein secondary structure prediction (PSSP). For this reason, predicting secondary structure with higher accuracy will give valuable information about the tertiary structure. Recently, deep learning techniques have obtained promising improvements in several machine learning applications including PSSP. In this article, a novel deep learning model, based on convolutional neural network and graph convolutional network is proposed. PSIBLAST PSSM, HHMAKE PSSM, physico-chemical properties of amino acids are combined with structural profiles to generate a rich feature set. Furthermore, the hyper-parameters of the proposed network are optimized using Bayesian optimization. The proposed model IGPRED obtained 89.19%, 86.34%, 87.87%, 85.76%, and 86.54% Q3 accuracies for CullPDB, EVAset, CASP10, CASP11, and CASP12 datasets, respectively. en_US
dc.description.sponsorship National Center for High Performance Computing of Turkey (UHeM) [5004062016] en_US
dc.description.sponsorship The experiments reported in this article were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources), the National Center for High Performance Computing of Turkey (UHeM) under project no 5004062016, and AGU HPC. en_US
dc.identifier.doi 10.1002/prot.26149
dc.identifier.issn 0887-3585
dc.identifier.issn 1097-0134
dc.identifier.scopus 2-s2.0-85106266658
dc.identifier.uri https://doi.org/10.1002/prot.26149
dc.identifier.uri https://hdl.handle.net/20.500.12573/3964
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof Proteins-Structure Function and Bioinformatics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bayesian Optimization en_US
dc.subject Convolutional Neural Network en_US
dc.subject Deep Learning en_US
dc.subject Graph Convolutional Network en_US
dc.subject Protein Secondary Structure Prediction en_US
dc.title IGPRED: Combination of Convolutional Neural and Graph Convolutional Networks for Protein Secondary Structure Prediction en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sabzekar, Mostafa/0000-0002-6886-1240
gdc.author.id Gormez, Yasin/0000-0001-8276-2030
gdc.author.scopusid 57195222392
gdc.author.scopusid 35796344600
gdc.author.scopusid 7003852510
gdc.author.wosid Sabzekar, Mostafa/Aad-7807-2020
gdc.author.wosid Görmez, Yasin/Jef-8096-2023
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Gormez, Yasin] Sivas Cumhuriyet Univ, Fac Econ & Adm Sci, Management Informat Syst, Sivas, Turkey; [Sabzekar, Mostafa] Birjand Univ Technol, Dept Comp Engn, Birjand, Iran; [Aydin, Zafer] Abdullah Gul Univ, Comp Engn Dept, Engn Fac, Kayseri, Turkey en_US
gdc.description.endpage 1288 en_US
gdc.description.issue 10 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1277 en_US
gdc.description.volume 89 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3161724381
gdc.identifier.pmid 33993559
gdc.identifier.wos WOS:000653902500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 16.0
gdc.oaire.influence 4.8283635E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Protein Conformation
gdc.oaire.keywords Computational Biology
gdc.oaire.keywords Proteins
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.popularity 1.5019609E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0206 medical engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 1.75558369
gdc.openalex.normalizedpercentile 0.82
gdc.opencitations.count 15
gdc.plumx.crossrefcites 9
gdc.plumx.mendeley 8
gdc.plumx.pubmedcites 7
gdc.plumx.scopuscites 19
gdc.scopus.citedcount 19
gdc.virtual.author Aydın, Zafer
gdc.wos.citedcount 12
relation.isAuthorOfPublication a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isAuthorOfPublication.latestForDiscovery a26c06af-eae3-407c-a21a-128459fa4d2f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files