Benzotiyeno[3,2-B][1]Benzotiyofen (BTBT) Tabanlı, Yüksek Performanslı N-Tipi/Ambipolar Yarı-İletkenlerin Geliştirilmesi Ve Yüksek Hızda Alan-Etkili Transistör (OFET) Uygulamaları
No Thumbnail Available
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
TUBİTAK
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Bu projede, daha önce literatürde bulunmayan, özgün kimyasal yapılara sahip 6 farklı_x000D_
düşük LUMO’lu BTBT-tabanlı yarı-iletken moleküler malzeme quantum mekaniksel_x000D_
hesaplamalarla teorik olarak tasarlanmış ve sentezlenmiştir. Bu yeni yarı-iletkenlerin_x000D_
saflaştırma sonrası detaylı bir şekilde yapısal, fizikokimyasal ve optoelektronik_x000D_
karakterizasyonları yapılıp organik alan-etkili transistör uygulamaları çalışılmıştır. Bunun_x000D_
sonucunda, dünyada ilk defa n-tipi olarak çalışabilen ve oldukça yüksek yarı-iletkenlik_x000D_
performansı gösteren (μe = 0.6 cm2_x000D_
/V·s; Ion/Ioff = 107_x000D_
-108_x000D_
) BTBT yarı-iletken molekülü,_x000D_
D(PhFCO)-BTBT, perflorofenilkarbonil grupları ile geliştirilmiştir. Geliştirilen D(PhFCO)-BTBT_x000D_
molekülü, son yılların en önemli π-sistemlerinden birisi olan BTBT yapısının elektron iletimi_x000D_
yapabileceğini literatürde ilk defa göstermesinin yanında, sahip olduğu yüksek elektron_x000D_
akışkanlığı ile literatürdeki sayılı n-tipi yarı-iletken moleküllerden birisi olarak kayda geçmiştir._x000D_
Alkildisiyanovinilen ile fonksiyonelleştirilmiş D(C7CC(CN)2)-BTBT ise literatürde geliştirilmiş ilk_x000D_
solüsyondan proses edilebilir n-tipi BTBT (μe = 0.001 cm2_x000D_
/V·s, Ion/Ioff = 104_x000D_
) yarı-iletken_x000D_
molekülü olmuştur. Karbonil ve disiyanovinilen fonksiyonelleştirmelerinin BTBT yapısındaki_x000D_
LUMO ve molekül-içi düzlemsellik etkisinin daha önceki π-sistemlerinden oldukça farklı_x000D_
olduğu bulgusuna ulaşılmıştır. Geliştirilen moleküler yarı-iletkenlerin moleküler_x000D_
dizilim/morfolojik/mikro-nanoyapı özellikleri dikkatlice incelendiğinde fonksiyonel grupların ve_x000D_
sübstitüyenlerin yarı-iletkenlik üzerindeki etkisi ortaya çıkarılmıştır. Ayrıca, bu projede_x000D_
geliştirilen farklı π-sistemlere sahip yarı-iletken kütüphanesinin detaylı incelemesi sonucunda_x000D_
“kimyasal yapı-optoelektronik özellikler-aygıt performansı” ilişkileri detaylı olarak çalışılmış,_x000D_
elektron-iletim özelliği olan yeni BTBT malzemelerinin geliştirilmeye devam edilmesi için_x000D_
ileriki çalışmalara ışık tutacak önemli bulgulara erişilmiştir.
In this project, six novel BTBT-based semiconducting molecules with low LUMO_x000D_ energetics have been designed by using quantum mechanical calculations and synthesized_x000D_ via conventional synthetic chemistry. The structural, physicochemical, and optoelectronic_x000D_ properties of these new semiconductors have been characterized in depth and they have_x000D_ been studied in organic field-effect transistor (OFET) applications. The most important_x000D_ outcome of this project is that the first n-type BTBT semiconducting molecule (D(PhFCO)-_x000D_ BTBT) in the literature has been developed with a very high transistor performance (μe = 0.6_x000D_ cm2_x000D_ /V‧s, Ion/Ioff = 107_x000D_ -108_x000D_ ). This molecule containing perfluorophenylcarbonyl end-groups_x000D_ demonstrates for the first time that the BTBT scaffold, as one of the most important πsystems of the past decade, could effectively transport electrons in optoelectronic devices._x000D_ D(PhFCO)-BTBT is also one of the few n-type semiconducting molecules in the literature with_x000D_ an electron mobility of μe ˃ 0.5 cm2_x000D_ /V. Alkyldicyanovinylene functionalized D(C7CC(CN)2)-_x000D_ BTBT has also been demonstrated as the first solution-processed molecular n-channel_x000D_ BTBT (μe = 0.001 cm2_x000D_ /V‧s, Ion/Ioff = 104_x000D_ ) semiconductor in the literature. Carbonyl and_x000D_ dicyanovinylene functionalization on BTBT π-core has been found to have interesting effects_x000D_ on the LUMO and intramolecular co-planarity, which is very different than the previously_x000D_ developed π-systems. When the molecular packing/morphology/micro-nanostructure_x000D_ properties of these new semiconductors have been investigated in detail, the effects of_x000D_ functional groups and substitutions on their semiconducting characteristics are revealed. In_x000D_ addition, as a result of the detailed investigation of the BTBT molecular library developed in_x000D_ this project, “chemical structure-optoelectronic properties-device performance” relationships_x000D_ have been elucidated, which could shed light on further studies for electron transporting_x000D_ BTBT based semiconductors.
In this project, six novel BTBT-based semiconducting molecules with low LUMO_x000D_ energetics have been designed by using quantum mechanical calculations and synthesized_x000D_ via conventional synthetic chemistry. The structural, physicochemical, and optoelectronic_x000D_ properties of these new semiconductors have been characterized in depth and they have_x000D_ been studied in organic field-effect transistor (OFET) applications. The most important_x000D_ outcome of this project is that the first n-type BTBT semiconducting molecule (D(PhFCO)-_x000D_ BTBT) in the literature has been developed with a very high transistor performance (μe = 0.6_x000D_ cm2_x000D_ /V‧s, Ion/Ioff = 107_x000D_ -108_x000D_ ). This molecule containing perfluorophenylcarbonyl end-groups_x000D_ demonstrates for the first time that the BTBT scaffold, as one of the most important πsystems of the past decade, could effectively transport electrons in optoelectronic devices._x000D_ D(PhFCO)-BTBT is also one of the few n-type semiconducting molecules in the literature with_x000D_ an electron mobility of μe ˃ 0.5 cm2_x000D_ /V. Alkyldicyanovinylene functionalized D(C7CC(CN)2)-_x000D_ BTBT has also been demonstrated as the first solution-processed molecular n-channel_x000D_ BTBT (μe = 0.001 cm2_x000D_ /V‧s, Ion/Ioff = 104_x000D_ ) semiconductor in the literature. Carbonyl and_x000D_ dicyanovinylene functionalization on BTBT π-core has been found to have interesting effects_x000D_ on the LUMO and intramolecular co-planarity, which is very different than the previously_x000D_ developed π-systems. When the molecular packing/morphology/micro-nanostructure_x000D_ properties of these new semiconductors have been investigated in detail, the effects of_x000D_ functional groups and substitutions on their semiconducting characteristics are revealed. In_x000D_ addition, as a result of the detailed investigation of the BTBT molecular library developed in_x000D_ this project, “chemical structure-optoelectronic properties-device performance” relationships_x000D_ have been elucidated, which could shed light on further studies for electron transporting_x000D_ BTBT based semiconductors.
Description
Keywords
organik yarı-iletken, organik optoelektronik, benzotiyeno[3,2- b][1]benzotiyofen (BTBT), organik alan-etkili transistör (OFET), π-konjüge küçük molekül, organic semiconductor, organic optoelectronics, benzothieno[3,2- b][1]benzothiophene (BTBT), organic field-effect transistor (OFET), π-conjugated small molecule
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
1
End Page
81
Google Scholar™
Sustainable Development Goals
7
AFFORDABLE AND CLEAN ENERGY

13
CLIMATE ACTION
