Many-to Transfer Learning on Motor Imagery BCI
| dc.contributor.author | Altindis, Fatih | |
| dc.contributor.author | Yilmaz, Bulent | |
| dc.contributor.author | Congedo, Marco | |
| dc.date.accessioned | 2025-09-25T10:50:36Z | |
| dc.date.available | 2025-09-25T10:50:36Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | This paper presents many-to-many domain adaptation strategy, named group learning, for motor imagery brain-computer interfaces (BCIs). Group learning, grounded in Riemannian geometry, simultaneously aligns multiple domains in a unified model, whereas fast alignment approach integrates new, unseen domains without re-estimating alignment matrices for all domains. Group learning creates a single machine learning model using data from previous subjects and/or sessions. Fast alignment utilizes the already trained model for an unseen domain without requiring any additional classifier training. The tests on five publicly available motor imagery databases demonstrate the robustness of group learning against negative learning. The classification accuracy scores of binary and multiclass databases show comparable, if not superior, performance to conventional subject-wise learning method. © 2025 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.1109/DASA63652.2024.10836450 | |
| dc.identifier.isbn | 9798350369106 | |
| dc.identifier.scopus | 2-s2.0-85217269243 | |
| dc.identifier.uri | https://doi.org/10.1109/DASA63652.2024.10836450 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4173 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | -- 2024 International Conference on Decision Aid Sciences and Applications, DASA 2024 -- Manama -- 206116 | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Brain-Computer Interface (Bci) | en_US |
| dc.subject | Domain Adaptation | en_US |
| dc.subject | Motor Imagery | en_US |
| dc.subject | Riemannian Geometry | en_US |
| dc.subject | Transfer Learning | en_US |
| dc.subject | Adversarial Machine Learning | en_US |
| dc.subject | Brain Computer Interface | en_US |
| dc.subject | Contrastive Learning | en_US |
| dc.subject | Image Classification | en_US |
| dc.subject | Transfer Learning | en_US |
| dc.subject | Adaptation Strategies | en_US |
| dc.subject | Brain-Computer Interface | en_US |
| dc.subject | Domain Adaptation | en_US |
| dc.subject | Fast Alignments | en_US |
| dc.subject | Group Learning | en_US |
| dc.subject | Many to Many | en_US |
| dc.subject | Motor Imagery | en_US |
| dc.subject | Multiple Domains | en_US |
| dc.subject | Riemannian Geometry | en_US |
| dc.subject | Federated Learning | en_US |
| dc.title | Many-to Transfer Learning on Motor Imagery BCI | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57193720164 | |
| gdc.author.scopusid | 57189925966 | |
| gdc.author.scopusid | 6602503746 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Altindis] Fatih, Department of Electrical and Electronic Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Yilmaz] Bulent, Department of Electrical Engineering, Gulf University for Science and Technology Kuwait, Hawally, Kuwait; [Congedo] Marco, Université Grenoble Alpes, Saint Martin d'Heres, France | en_US |
| gdc.description.endpage | 5 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1 | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4406524211 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5349236E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.4744335E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.28 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Altındiş, Fatih | |
| relation.isAuthorOfPublication | 22cc2238-8fd3-4783-aa91-d8f69c83ece6 | |
| relation.isAuthorOfPublication.latestForDiscovery | 22cc2238-8fd3-4783-aa91-d8f69c83ece6 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication | f22f14aa-23ad-40e4-bc25-b9705d4051ed | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
