Many-to Transfer Learning on Motor Imagery BCI

dc.contributor.author Altindis, Fatih
dc.contributor.author Yilmaz, Bulent
dc.contributor.author Congedo, Marco
dc.date.accessioned 2025-09-25T10:50:36Z
dc.date.available 2025-09-25T10:50:36Z
dc.date.issued 2024
dc.description.abstract This paper presents many-to-many domain adaptation strategy, named group learning, for motor imagery brain-computer interfaces (BCIs). Group learning, grounded in Riemannian geometry, simultaneously aligns multiple domains in a unified model, whereas fast alignment approach integrates new, unseen domains without re-estimating alignment matrices for all domains. Group learning creates a single machine learning model using data from previous subjects and/or sessions. Fast alignment utilizes the already trained model for an unseen domain without requiring any additional classifier training. The tests on five publicly available motor imagery databases demonstrate the robustness of group learning against negative learning. The classification accuracy scores of binary and multiclass databases show comparable, if not superior, performance to conventional subject-wise learning method. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/DASA63652.2024.10836450
dc.identifier.isbn 9798350369106
dc.identifier.scopus 2-s2.0-85217269243
dc.identifier.uri https://doi.org/10.1109/DASA63652.2024.10836450
dc.identifier.uri https://hdl.handle.net/20.500.12573/4173
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 2024 International Conference on Decision Aid Sciences and Applications, DASA 2024 -- Manama -- 206116 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Brain-Computer Interface (Bci) en_US
dc.subject Domain Adaptation en_US
dc.subject Motor Imagery en_US
dc.subject Riemannian Geometry en_US
dc.subject Transfer Learning en_US
dc.subject Adversarial Machine Learning en_US
dc.subject Brain Computer Interface en_US
dc.subject Contrastive Learning en_US
dc.subject Image Classification en_US
dc.subject Transfer Learning en_US
dc.subject Adaptation Strategies en_US
dc.subject Brain-Computer Interface en_US
dc.subject Domain Adaptation en_US
dc.subject Fast Alignments en_US
dc.subject Group Learning en_US
dc.subject Many to Many en_US
dc.subject Motor Imagery en_US
dc.subject Multiple Domains en_US
dc.subject Riemannian Geometry en_US
dc.subject Federated Learning en_US
dc.title Many-to Transfer Learning on Motor Imagery BCI en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57193720164
gdc.author.scopusid 57189925966
gdc.author.scopusid 6602503746
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Altindis] Fatih, Department of Electrical and Electronic Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Yilmaz] Bulent, Department of Electrical Engineering, Gulf University for Science and Technology Kuwait, Hawally, Kuwait; [Congedo] Marco, Université Grenoble Alpes, Saint Martin d'Heres, France en_US
gdc.description.endpage 5
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4406524211
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.4744335E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.28
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Altındiş, Fatih
relation.isAuthorOfPublication 22cc2238-8fd3-4783-aa91-d8f69c83ece6
relation.isAuthorOfPublication.latestForDiscovery 22cc2238-8fd3-4783-aa91-d8f69c83ece6
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication f22f14aa-23ad-40e4-bc25-b9705d4051ed
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files