Assessing Employee Attrition Using Classifications Algorithms
| dc.contributor.author | Ozdemir, Fatma | |
| dc.contributor.author | Cos¸kun, Mustafa | |
| dc.contributor.author | Gezer, Cengiz | |
| dc.contributor.author | Güngör, Vehbi Çağrı | |
| dc.date.accessioned | 2025-09-25T10:41:10Z | |
| dc.date.available | 2025-09-25T10:41:10Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | Employees leave an organization when other organizations offer better opportunities than their current organizations. Continuity and sustenance and even completion of jobs are crucial issues for the companies not to suffer financial losses. Especially if the talented employees, who are at critical positions in the companies, leave the job, it becomes difficult for the organizations to maintain their businesses. Today, organizations would like to predict attrition of their employees and plan and prepare for it. However, the HR departments of organizations are not advanced enough to make such predictions in a handcrafted manner. For this reason, organizations are looking for new systems or methods that automatize the prediction of employee attrition utilizing data mining methods. In this study, we use IBM HR data set and apply different classification methods, such as Support Vector Machine (SVM), Random Forest, J48, LogitBoost, Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Naive Bayes, Bagging, AdaBoost, Logistic Regression, to predict the employee attrition. Different from exiting studies, we systematically evaluate our findings with various classification metrics, such as F-measure, Area Under Curve, accuracy, sensitivity, and specificity. We observe that data mining methods can be useful for predicting the employee attrition. © 2022 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.1145/3404663.3404681 | |
| dc.identifier.isbn | 9781450385855 | |
| dc.identifier.isbn | 9781450314398 | |
| dc.identifier.isbn | 9781450396387 | |
| dc.identifier.isbn | 9781450390019 | |
| dc.identifier.isbn | 9781450390217 | |
| dc.identifier.isbn | 9781450348270 | |
| dc.identifier.isbn | 9781450381963 | |
| dc.identifier.isbn | 9781450322485 | |
| dc.identifier.isbn | 9781450348201 | |
| dc.identifier.isbn | 9781450364454 | |
| dc.identifier.scopus | 2-s2.0-85092434028 | |
| dc.identifier.uri | https://doi.org/10.1145/3404663.3404681 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3331 | |
| dc.language.iso | en | en_US |
| dc.publisher | Association for Computing Machinery | en_US |
| dc.relation.ispartof | ACM International Conference Proceeding Series -- 4th International Conference on Information System and Data Mining, ICISDM 2020 -- Hilo; HI; University of Hawaii at Hilo -- 161677 | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Classification Methods | en_US |
| dc.subject | Data Mining | en_US |
| dc.subject | Employee Attrition | en_US |
| dc.subject | Adaptive Boosting | en_US |
| dc.subject | Decision Trees | en_US |
| dc.subject | Discriminant Analysis | en_US |
| dc.subject | Forecasting | en_US |
| dc.subject | Information Systems | en_US |
| dc.subject | Information Use | en_US |
| dc.subject | Logistic Regression | en_US |
| dc.subject | Losses | en_US |
| dc.subject | Multilayer Neural Networks | en_US |
| dc.subject | Nearest Neighbor Search | en_US |
| dc.subject | Personnel | en_US |
| dc.subject | Support Vector Machines | en_US |
| dc.subject | Support Vector Regression | en_US |
| dc.subject | Classification Methods | en_US |
| dc.subject | Critical Positions | en_US |
| dc.subject | Data Mining Methods | en_US |
| dc.subject | Financial Loss | en_US |
| dc.subject | Hr Department | en_US |
| dc.subject | K Nearest Neighbor (Knn) | en_US |
| dc.subject | Linear Discriminant Analysis | en_US |
| dc.subject | Multi Layer Perceptron | en_US |
| dc.subject | Data Mining | en_US |
| dc.title | Assessing Employee Attrition Using Classifications Algorithms | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57799965300 | |
| gdc.author.scopusid | 57189031203 | |
| gdc.author.scopusid | 57212210999 | |
| gdc.author.scopusid | 10739803300 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Ozdemir] Fatma, Department of Electrical & Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Cos¸kun] Mustafa, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Gezer] Cengiz, Research and Development Center, Istanbul, Turkey; [Güngör] Vehbi Çağrı, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey | en_US |
| gdc.description.endpage | 122 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 118 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W3041741730 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 6.0 | |
| gdc.oaire.influence | 4.2808113E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.6015248E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 2.56870143 | |
| gdc.openalex.normalizedpercentile | 0.89 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 11 | |
| gdc.plumx.crossrefcites | 15 | |
| gdc.plumx.mendeley | 51 | |
| gdc.plumx.scopuscites | 21 | |
| gdc.scopus.citedcount | 21 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
