Assessing Employee Attrition Using Classifications Algorithms

dc.contributor.author Ozdemir, Fatma
dc.contributor.author Cos¸kun, Mustafa
dc.contributor.author Gezer, Cengiz
dc.contributor.author Güngör, Vehbi Çağrı
dc.date.accessioned 2025-09-25T10:41:10Z
dc.date.available 2025-09-25T10:41:10Z
dc.date.issued 2020
dc.description.abstract Employees leave an organization when other organizations offer better opportunities than their current organizations. Continuity and sustenance and even completion of jobs are crucial issues for the companies not to suffer financial losses. Especially if the talented employees, who are at critical positions in the companies, leave the job, it becomes difficult for the organizations to maintain their businesses. Today, organizations would like to predict attrition of their employees and plan and prepare for it. However, the HR departments of organizations are not advanced enough to make such predictions in a handcrafted manner. For this reason, organizations are looking for new systems or methods that automatize the prediction of employee attrition utilizing data mining methods. In this study, we use IBM HR data set and apply different classification methods, such as Support Vector Machine (SVM), Random Forest, J48, LogitBoost, Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Naive Bayes, Bagging, AdaBoost, Logistic Regression, to predict the employee attrition. Different from exiting studies, we systematically evaluate our findings with various classification metrics, such as F-measure, Area Under Curve, accuracy, sensitivity, and specificity. We observe that data mining methods can be useful for predicting the employee attrition. © 2022 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1145/3404663.3404681
dc.identifier.isbn 9781450385855
dc.identifier.isbn 9781450314398
dc.identifier.isbn 9781450396387
dc.identifier.isbn 9781450390019
dc.identifier.isbn 9781450390217
dc.identifier.isbn 9781450348270
dc.identifier.isbn 9781450381963
dc.identifier.isbn 9781450322485
dc.identifier.isbn 9781450348201
dc.identifier.isbn 9781450364454
dc.identifier.scopus 2-s2.0-85092434028
dc.identifier.uri https://doi.org/10.1145/3404663.3404681
dc.identifier.uri https://hdl.handle.net/20.500.12573/3331
dc.language.iso en en_US
dc.publisher Association for Computing Machinery en_US
dc.relation.ispartof ACM International Conference Proceeding Series -- 4th International Conference on Information System and Data Mining, ICISDM 2020 -- Hilo; HI; University of Hawaii at Hilo -- 161677 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Classification Methods en_US
dc.subject Data Mining en_US
dc.subject Employee Attrition en_US
dc.subject Adaptive Boosting en_US
dc.subject Decision Trees en_US
dc.subject Discriminant Analysis en_US
dc.subject Forecasting en_US
dc.subject Information Systems en_US
dc.subject Information Use en_US
dc.subject Logistic Regression en_US
dc.subject Losses en_US
dc.subject Multilayer Neural Networks en_US
dc.subject Nearest Neighbor Search en_US
dc.subject Personnel en_US
dc.subject Support Vector Machines en_US
dc.subject Support Vector Regression en_US
dc.subject Classification Methods en_US
dc.subject Critical Positions en_US
dc.subject Data Mining Methods en_US
dc.subject Financial Loss en_US
dc.subject Hr Department en_US
dc.subject K Nearest Neighbor (Knn) en_US
dc.subject Linear Discriminant Analysis en_US
dc.subject Multi Layer Perceptron en_US
dc.subject Data Mining en_US
dc.title Assessing Employee Attrition Using Classifications Algorithms en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57799965300
gdc.author.scopusid 57189031203
gdc.author.scopusid 57212210999
gdc.author.scopusid 10739803300
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Ozdemir] Fatma, Department of Electrical & Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Cos¸kun] Mustafa, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Gezer] Cengiz, Research and Development Center, Istanbul, Turkey; [Güngör] Vehbi Çağrı, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 122 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 118 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3041741730
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 4.2808113E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.6015248E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 2.56870143
gdc.openalex.normalizedpercentile 0.89
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 11
gdc.plumx.crossrefcites 15
gdc.plumx.mendeley 51
gdc.plumx.scopuscites 21
gdc.scopus.citedcount 21
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files