Optimized Activation of Solution-Processed Amorphous Oxide Semiconductors for Flexible Transparent Conductive Electrodes
No Thumbnail Available
Date
2018
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Open Access Color
GOLD
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Here, the preparation of transparent amorphous oxide semiconductor (AOS) films with unprecedented conductivity via an optimized activation process under hydrogen atmosphere for applications in solution-processed large-area optoelectronics is reported. Owing to their high cost and mechanical vulnerability, conventional vacuum-processed indium-tin oxide (ITO) electrodes are inappropriate for use in next-generation flexible and wearable electronic devices and systems. As an alternative to the ITO electrodes, solution-processed AOS films, such as alpha-IZO and alpha-ZITO, with an optimized composition and postreduction treatment under hydrogen show the highest electrical conductivity of approximate to 300 S cm(-1) and a high optical transmittance of over 90% at 550 nm. The microstructures and electrical properties of these AOS films are also studied in order to determine the optimized chemical composition and postreduction conditions. It is found that a controlled hydrogen reduction treatment of AOS films is critical for achieving high electrical conductivity by suppressing the surface morphology degradation and grain boundary disconnection. Furthermore, the alpha-IZO transparent conductive electrodes are successfully implemented for high efficiency organic photovoltaic cells based on the PTB7/PC71BM active layers. This technique promises the low-cost fabrication of high mobility and/or conductive AOSs for their applications in large-area transparent and flexible optoelectronics.
Description
Kang, Minji/0000-0001-6244-4625; Usta, Hakan/0000-0002-0618-1979
Keywords
Activation Treatments, Amorphous Oxide Semiconductors, Indium-Zinc Oxide, Oxide Solution-Processing, Transparent Conductive Electrodes
Turkish CoHE Thesis Center URL
Fields of Science
0103 physical sciences, 01 natural sciences
Citation
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
15
Source
Advanced Electronic Materials
Volume
4
Issue
1
Start Page
End Page
PlumX Metrics
Citations
CrossRef : 17
Scopus : 18
Captures
Mendeley Readers : 32
SCOPUS™ Citations
18
checked on Feb 03, 2026
Web of Science™ Citations
17
checked on Feb 03, 2026
Page Views
4
checked on Feb 03, 2026
Google Scholar™

OpenAlex FWCI
1.18925013
Sustainable Development Goals
7
AFFORDABLE AND CLEAN ENERGY


