Investigating the Best Automatic Programming Method in Predicting the Aerodynamic Characteristics of Wind Turbine Blade

dc.contributor.author Arslan, Sibel
dc.contributor.author Koca, Kemal
dc.date.accessioned 2025-09-25T10:49:16Z
dc.date.available 2025-09-25T10:49:16Z
dc.date.issued 2023
dc.description Arslan, Sibel/0000-0003-3626-553X; en_US
dc.description.abstract Automatic programming (AP) is a subfield of artificial intelligence (AI) that can automatically generate computer programs and solve complex engineering problems. This paper presents the accuracy of four different AP methods in predicting the aerodynamic coefficients and power efficiency of the AH 93-W-145 wind turbine blade at different Reynolds numbers and angles of attack. For the first time in the literature, Genetic Programming (GP) and Artificial Bee Colony Programming (ABCP) methods are used for such predictions. In addition, Airfoil Tools and JavaFoil are utilized for airfoil selection and dataset generation. The Reynolds number and angle of attack of the wind turbine airfoil are input parameters, while the coefficients CL, CD and power efficiency are output parameters. The results show that while all four methods tested in the study accurately predict the aerodynamic coefficients, Multi Gene GP (MGGP) method achieves the highest accuracy for R2Train and R2Test (R2 values in CD Train: 0.997-Test: 0.994, in CL Train: 0.991-Test: 0.990, in PE Train: 0.990-Test: 0.970). By providing the most precise model for properly predicting the aerodynamic performance of higher cambered wind turbine airfoils, this innovative and comprehensive study will close a research gap. This will make a significant contribution to the field of AI and aerodynamics research without experimental cost, labor, and additional time. en_US
dc.identifier.doi 10.1016/j.engappai.2023.106210
dc.identifier.issn 0952-1976
dc.identifier.issn 1873-6769
dc.identifier.scopus 2-s2.0-85151296946
dc.identifier.uri https://doi.org/10.1016/j.engappai.2023.106210
dc.identifier.uri https://hdl.handle.net/20.500.12573/4045
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.relation.ispartof Engineering Applications of Artificial Intelligence en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Automatic Programming en_US
dc.subject Genetic Programming en_US
dc.subject Artificial Bee Colony Programming en_US
dc.subject Aerodynamic Coefficients en_US
dc.subject Power Efficiency en_US
dc.subject Wind Turbine Blade en_US
dc.title Investigating the Best Automatic Programming Method in Predicting the Aerodynamic Characteristics of Wind Turbine Blade en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Arslan, Sibel/0000-0003-3626-553X
gdc.author.scopusid 56884022900
gdc.author.scopusid 57189709341
gdc.author.wosid Arslan, Sibel/Izd-6865-2023
gdc.author.wosid Arslan, Sibel/Izd-6865-2023
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Arslan, Sibel] Sivas Cumhuriyet Univ, Dept Software Engn, TR-58140 Sivas, Turkiye; [Koca, Kemal] Abdullah Gul Univ, Dept Mech Engn, TR-38080 Kayseri, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 106210
gdc.description.volume 123 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4361285740
gdc.identifier.wos WOS:000969649600001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 15.0
gdc.oaire.influence 3.430679E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Automatic programming
gdc.oaire.keywords Aerodynamic coefficients
gdc.oaire.keywords Power efficiency
gdc.oaire.keywords Artificial bee colony programming
gdc.oaire.keywords Genetic programming
gdc.oaire.keywords Wind turbine blade
gdc.oaire.popularity 1.37036364E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 7.79925402
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 11
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.virtual.author Koca, Kemal
gdc.wos.citedcount 10
relation.isAuthorOfPublication ae07c78a-b2fa-4df5-b9c7-7c7676903bb5
relation.isAuthorOfPublication.latestForDiscovery ae07c78a-b2fa-4df5-b9c7-7c7676903bb5
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 206d9336-1d4b-45a2-a957-c641463cadea
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files