Assessment of Deformation Properties of CoAl Measure Sandstones Through Regression Analyses and Artificial Neural Networks

dc.contributor.author Koken, Ekin
dc.date.accessioned 2025-09-25T10:41:14Z
dc.date.available 2025-09-25T10:41:14Z
dc.date.issued 2021
dc.description Koken, Ekin/0000-0003-0178-329X; en_US
dc.description.abstract The deformation properties of rocks play a crucial role in handling most geomechanical problems. However, the determination of these properties in laboratory is costly and necessitates special equipment. Therefore, many attempts were made to estimate these properties using different techniques. In this study, various statistical and soft computing methods were employed to predict the tangential Young Modulus (Eti, GPa) and tangential Poisson's Ratio (vti) of coal measure sandstones located in Zonguldak Hardcoal Basin (ZHB), NW Turkey. Predictive models were established based on various regression and artificial neural network (ANN) analyses, including physicomechanical, mineralogical, and textural properties of rocks. The analysis results showed that the mineralogical features such as the contents of quartz (Q, %) and lithic fragment (LF, %) and the textural features (i.e., average grain size, d50, and sorting coefficient, Sc) have remarkable impacts on deformation properties of the investigated sandstones. By comparison with these features, the mineralogical effects seem to be more effective in predicting the Eti and vti. The performance of the established models was assessed using several statistical indicators. The predicted results from the proposed models were compared to one another. It was concluded that the empirical models based on the ANN were found to be the most convenient tools for evaluating the deformational properties of the investigated sandstones. en_US
dc.identifier.doi 10.24425/ams.2021.139595
dc.identifier.issn 0860-7001
dc.identifier.issn 1689-0469
dc.identifier.scopus 2-s2.0-85124812662
dc.identifier.uri https://doi.org/10.24425/ams.2021.139595
dc.identifier.uri https://hdl.handle.net/20.500.12573/3335
dc.language.iso en en_US
dc.publisher Polska Akad Nauk, Polish Acad Sciences en_US
dc.relation.ispartof Archives of Mining Sciences en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Sandstone en_US
dc.subject Zonguldak en_US
dc.subject Deformation Properties en_US
dc.subject Regression Analysis en_US
dc.subject Artificial Neural Network en_US
dc.title Assessment of Deformation Properties of CoAl Measure Sandstones Through Regression Analyses and Artificial Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Koken, Ekin/0000-0003-0178-329X
gdc.author.institutional Koken, Ekin
gdc.author.scopusid 57193992490
gdc.author.wosid Köken, Ekin/Aaa-5063-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Koken, Ekin] Abdullah Gul Univ, Nanotechnol Engn Dept, TR-38170 Kayseri, Turkey en_US
gdc.description.endpage 542 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 523 en_US
gdc.description.volume 66 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4384927362
gdc.identifier.wos WOS:000755158600003
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.downloads 35
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.6684852E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Zonguldak
gdc.oaire.keywords Sandstone
gdc.oaire.keywords regression analysis
gdc.oaire.keywords artificial neural network
gdc.oaire.keywords deformation properties
gdc.oaire.popularity 6.565367E-9
gdc.oaire.publicfunded false
gdc.oaire.views 103
gdc.openalex.collaboration National
gdc.openalex.fwci 1.10706672
gdc.openalex.normalizedpercentile 0.68
gdc.opencitations.count 6
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.virtual.author Köken, Ekin
gdc.wos.citedcount 8
relation.isAuthorOfPublication 9352c019-c944-4e23-a8e2-c73fac861cb6
relation.isAuthorOfPublication.latestForDiscovery 9352c019-c944-4e23-a8e2-c73fac861cb6
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 03adf3b0-3511-421e-b492-8fe188140fc0
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files