Data-Driven Methods for Optimal Setting of Legacy Control Devices in Distribution Grids

dc.contributor.author Savasci, Alper
dc.contributor.author Ceylan, Oǧuzhan
dc.contributor.author Paudyal, Sumit
dc.date.accessioned 2025-09-25T10:43:28Z
dc.date.available 2025-09-25T10:43:28Z
dc.date.issued 2024
dc.description.abstract This study presents machine learning-based dispatch strategies for legacy voltage regulation devices, i.e., onload tap changers (OLTCs), step-voltage regulators (SVRs), and switched-capacitors (SCs) in modern distribution networks. The proposed approach utilizes k-nearest neighbor (KNN), random forest (RF), and neural networks (NN) to map nodal net active and reactive injections to the optimal legacy controls and resulting voltage magnitudes. To implement these strategies, first, an efficient optimal power flow (OPF) is formulated as a mixed-integer linear program that obtains optimal decisions of tap positions for OLTCs, SVRs, and on/off status of SCs. Then, training and testing datasets are generated by solving the OPF model for daily horizons with 1-hr resolution for varying loading and photovoltaic (PV) generation profile. Case studies on the 33-node feeder demonstrate high-accuracy mapping between the input feature and the output vector, which is promising for integrated Volt/VAr control schemes. © 2024 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/PESGM51994.2024.10760279
dc.identifier.isbn 9781467327275
dc.identifier.isbn 9781538677032
dc.identifier.isbn 9798350381832
dc.identifier.isbn 9781479913039
dc.identifier.isbn 9781665405072
dc.identifier.isbn 9781467380409
dc.identifier.isbn 9781509041688
dc.identifier.isbn 9781728119816
dc.identifier.isbn 9781728155081
dc.identifier.isbn 9781479964154
dc.identifier.issn 1944-9925
dc.identifier.issn 1944-9933
dc.identifier.scopus 2-s2.0-85212398232
dc.identifier.uri https://doi.org/10.1109/PESGM51994.2024.10760279
dc.identifier.uri https://hdl.handle.net/20.500.12573/3561
dc.language.iso en en_US
dc.publisher IEEE Computer Society en_US
dc.relation.ispartof IEEE Power and Energy Society General Meeting -- 2024 IEEE Power and Energy Society General Meeting, PESGM 2024 -- Seattle; WA -- 203130 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Distribution Grid en_US
dc.subject Machine Learning en_US
dc.subject Optimal Power Flow en_US
dc.subject Voltage Control en_US
dc.subject Integer Programming en_US
dc.subject Load Flow Control en_US
dc.subject Load Flow Optimization en_US
dc.subject Mixed-Integer Linear Programming en_US
dc.subject Nearest Neighbor Search en_US
dc.subject Power Distribution Networks en_US
dc.subject Random Forests en_US
dc.subject Control Device en_US
dc.subject Data-Driven Methods en_US
dc.subject Dispatch Strategy en_US
dc.subject Distribution Grid en_US
dc.subject Machine-Learning en_US
dc.subject Onload Tap Changer en_US
dc.subject Optimal Power Flows en_US
dc.subject Optimal Setting en_US
dc.subject Step Voltage Regulators en_US
dc.subject Switched Capacitor en_US
dc.subject Decision Trees en_US
dc.title Data-Driven Methods for Optimal Setting of Legacy Control Devices in Distribution Grids en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57214754719
gdc.author.scopusid 26665865200
gdc.author.scopusid 26423147300
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Savasci] Alper, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Ceylan] Oǧuzhan, Kadir Has Üniversitesi, Istanbul, Turkey; [Paudyal] Sumit, Florida International University, Miami, United States en_US
gdc.description.endpage 5
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4404741263
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.4744335E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.63620868
gdc.openalex.normalizedpercentile 0.64
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Savaşcı, Alper
relation.isAuthorOfPublication a7b79ba6-bfbe-46e0-b970-cbc66554ea95
relation.isAuthorOfPublication.latestForDiscovery a7b79ba6-bfbe-46e0-b970-cbc66554ea95
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication f22f14aa-23ad-40e4-bc25-b9705d4051ed
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files