İki Durumlu Bir Beyin Bilgisayar Arayüzünde Özellik Çıkarımı ve Sınıflandırma

dc.contributor.author Altindis, Fatih
dc.contributor.author Yilmaz, Bulent
dc.date.accessioned 2025-09-25T10:37:19Z
dc.date.available 2025-09-25T10:37:19Z
dc.date.issued 2017
dc.description.abstract Brain Computer Interface (BCI) technology is used to help patients who do not have control over motor neurons such as ALS or paralyzed patients, to communicate with outer world. This work aims to classify motor imageries using real-time EEG dataset, which was published by Graz University, Austria. The dataset consists of two-channel EEG signals of right-hand movement imagery and left-hand movement imagery of 8 subjects. There are a total of 120 motor imagery trials (60 left and 60 right) EEG signals recorded from each subject. EEG signals are filtered and feature vectors were extracted that consist of 24, 32 and 40 relative band power values (RBPV). In this work, feature vectors classified by three different methods, linear discriminant analysis (LDA), K nearest neighbor (KNN) and support vector machines (SVM). Results show that best performance was achieved by 24 RBPV feature vector and LDA classification method. © 2017 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/TIPTEKNO.2016.7863118
dc.identifier.isbn 9781509023868
dc.identifier.scopus 2-s2.0-85016105206
dc.identifier.uri https://doi.org/10.1109/TIPTEKNO.2016.7863118
dc.identifier.uri https://hdl.handle.net/20.500.12573/2949
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 2016 Medical Technologies National Conference, TIPTEKNO 2016 -- Antalya -- 126633 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Brain-Computer Interfaces en_US
dc.subject Classification en_US
dc.subject EEG en_US
dc.subject Motor Imagery en_US
dc.subject Relative Band Power en_US
dc.subject Biomedical Engineering en_US
dc.subject Brain Computer Interface en_US
dc.subject Classification (Of Information) en_US
dc.subject Discriminant Analysis en_US
dc.subject Electroencephalography en_US
dc.subject Feature Extraction en_US
dc.subject Image Retrieval en_US
dc.subject Interface States en_US
dc.subject Interfaces (Computer) en_US
dc.subject Medical Computing en_US
dc.subject Nearest Neighbor Search en_US
dc.subject Neurons en_US
dc.subject Signal Processing en_US
dc.subject Support Vector Machines en_US
dc.subject Vectors en_US
dc.subject Classification Methods en_US
dc.subject Feature Extraction and Classification en_US
dc.subject Feature Vectors en_US
dc.subject K Nearest Neighbor (Knn) en_US
dc.subject Linear Discriminant Analysis en_US
dc.subject Motor Imagery en_US
dc.subject Paralyzed Patients en_US
dc.subject Relative Band Power en_US
dc.subject Biomedical Signal Processing en_US
dc.title İki Durumlu Bir Beyin Bilgisayar Arayüzünde Özellik Çıkarımı ve Sınıflandırma en_US
dc.title.alternative Feature Extraction and Classification in a Two-State Brain-Computer Interface en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57193720164
gdc.author.scopusid 57189925966
gdc.author.wosid Altindis, Fatih/Aag-4770-2021
gdc.author.wosid Yılmaz, Bülent/Acr-8602-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Altindis] Fatih, Abdullah Gül Üniversitesi, Kayseri, Turkey, Elektrik Ve Elektronik Mühendisliǧi Bölümü, Bilkent Üniversitesi, Ankara, Turkey; [Yilmaz] Bulent, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W2591697794
gdc.identifier.wos WOS:000455003600057
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5865035E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 8.8236524E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.openalex.fwci 0.15408938
gdc.openalex.normalizedpercentile 0.62
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.virtual.author Altındiş, Fatih
gdc.wos.citedcount 0
relation.isAuthorOfPublication 22cc2238-8fd3-4783-aa91-d8f69c83ece6
relation.isAuthorOfPublication.latestForDiscovery 22cc2238-8fd3-4783-aa91-d8f69c83ece6
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication f22f14aa-23ad-40e4-bc25-b9705d4051ed
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files