UV Light Promoted Dihydrolipoic Acid and Its Alanine Derivative Directed Rapid Synthesis of Stable Gold Nanoparticles and Their Catalytic Activity

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Portfolio

Open Access Color

HYBRID

Green Open Access

Yes

OpenAIRE Downloads

19

OpenAIRE Views

88

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In general, colloidal gold nanoparticles (AuNPs) have been synthesized in heated or boiling water containing HAuCl4 precursor with sodium citrate as reducing stabilizing reagent. Although temperature plays a driving for synthesis of AuNPs, elevated temperature in thermal reduction method causes aggregation of the AuNPs. The preferential, rapid and strong binding of dihydro-lipoic acid and its derivatives on surface of AuNPs via thiol - Au chemistry promote the production of very stable AuNPs. In this study, we have developed citric acid (CA), dihydrolipoic acid (DHLA) and DHLA-Alanine (DHLA-Ala) directed rapid synthesis of ultra-stable AuNPs, DHLA@AuNPs and DHLA-Ala@AuNPs, under the UV (311 nm) irradiation at room temperature (RT: 25 degrees C) in around 10 min (min). CA is used as a potential reducing agent to expedite both reduction of Au3+ ion and AuNP formation, DHLA and DHLA-Ala act as stabilizing agents by replacing CA molecules on surface of AuNPs in order to produce quite stable AuNP. It is worthy to mention that reduction of Au3+ ion, formation and surface stabilization of AuNPs are consequently occurred in one step. We also investigated how experimental parameters including reaction time and temperature, pH of reaction solution, affect formation of the AuNPs. The effects of salt concentration and storage temperature were studied to show stability of the AuNPs. The synthesized DHLA@AuNPs and DHLA-Alanine@AuNPs were characterized via UV-Vis spectrophotometer (UV-Vis), scanning transmission electron microscope (STEM), dynamic light scattering (DLS) and Zeta potential (ZT) devices. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was efficiently catalyzed by the AuNPs in the presence of sodium borohydride in aqueous solution.

Description

Nisari, Mustafa/0000-0001-7469-8921; Avan, Ilker/0000-0002-0816-0610

Keywords

Dihydrolipoic Acid, Photo-Reduction, Ultra-Stable Gold Nanoparticle, Catalytic Activity, Photo-reduction, Science, Q, R, Dihydrolipoic acid, Medicine, Ultra-stable Gold Nanoparticle, Article, Catalytic activity

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Scientific Reports

Volume

14

Issue

1

Start Page

End Page

PlumX Metrics
Citations

Scopus : 8

PubMed : 2

Captures

Mendeley Readers : 9

SCOPUS™ Citations

9

checked on Feb 03, 2026

Web of Science™ Citations

10

checked on Feb 03, 2026

Page Views

1

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.69344175

Sustainable Development Goals

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo