From Traditional to Deep: Evaluating Sentiment Analysis Models on a Large-Scale Tweet Dataset

dc.contributor.author Mammadov, Alisahib
dc.contributor.author Bakal, Gokhan
dc.date.accessioned 2025-09-25T10:47:38Z
dc.date.available 2025-09-25T10:47:38Z
dc.date.issued 2024
dc.description.abstract This study investigates the effectiveness of various machine learning (ML) and deep learning (DL) techniques for large-scale sentiment analysis on Twitter data. We leverage a publicly available dataset of one million tweets, annotated with four sentiment labels (positive, negative, uncertainty, and liti-gious), to train and evaluate a range of models. Our experiments demonstrate that traditional ML algorithms, particularly XG-Boost, achieve high performance, with the best F1 score reaching 95.81% using a combination of unigrams and bigrams. Among DL models, a hybrid CNN-BiGRU architecture yields the highest average F1 score of 95.42%. Our findings highlight the strengths of different approaches for sentiment analysis on Twitter data and emphasize the importance of data preprocessing and model selection for achieving optimal performance. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/UBMK63289.2024.10773489
dc.identifier.isbn 9798350365887
dc.identifier.scopus 2-s2.0-85215516712
dc.identifier.uri https://doi.org/10.1109/UBMK63289.2024.10773489
dc.identifier.uri https://hdl.handle.net/20.500.12573/3880
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- Antalya -- 204906 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep Learning en_US
dc.subject Machine Learning en_US
dc.subject Sentiment Analysis en_US
dc.subject Text Mining en_US
dc.subject Adversarial Machine Learning en_US
dc.subject Contrastive Learning en_US
dc.subject Deep Reinforcement Learning en_US
dc.subject Analysis Models en_US
dc.subject Deep Learning en_US
dc.subject F1 Scores en_US
dc.subject Large-Scales en_US
dc.subject Learning Techniques en_US
dc.subject Machine-Learning en_US
dc.subject Positive/Negative en_US
dc.subject Sentiment Analysis en_US
dc.subject Text-Mining en_US
dc.subject Uncertainty en_US
dc.subject Tweets en_US
dc.title From Traditional to Deep: Evaluating Sentiment Analysis Models on a Large-Scale Tweet Dataset en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 59520315500
gdc.author.scopusid 57074041500
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial true
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Mammadov] Alisahib, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Bakal] Gokhan, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 456 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 451 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4405272520
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.4744335E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.22
gdc.opencitations.count 0
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Bakal, Mehmet Gökhan
relation.isAuthorOfPublication 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isAuthorOfPublication.latestForDiscovery 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files