From Traditional to Deep: Evaluating Sentiment Analysis Models on a Large-Scale Tweet Dataset
| dc.contributor.author | Mammadov, Alisahib | |
| dc.contributor.author | Bakal, Gokhan | |
| dc.date.accessioned | 2025-09-25T10:47:38Z | |
| dc.date.available | 2025-09-25T10:47:38Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | This study investigates the effectiveness of various machine learning (ML) and deep learning (DL) techniques for large-scale sentiment analysis on Twitter data. We leverage a publicly available dataset of one million tweets, annotated with four sentiment labels (positive, negative, uncertainty, and liti-gious), to train and evaluate a range of models. Our experiments demonstrate that traditional ML algorithms, particularly XG-Boost, achieve high performance, with the best F1 score reaching 95.81% using a combination of unigrams and bigrams. Among DL models, a hybrid CNN-BiGRU architecture yields the highest average F1 score of 95.42%. Our findings highlight the strengths of different approaches for sentiment analysis on Twitter data and emphasize the importance of data preprocessing and model selection for achieving optimal performance. © 2025 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.1109/UBMK63289.2024.10773489 | |
| dc.identifier.isbn | 9798350365887 | |
| dc.identifier.scopus | 2-s2.0-85215516712 | |
| dc.identifier.uri | https://doi.org/10.1109/UBMK63289.2024.10773489 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3880 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | -- 9th International Conference on Computer Science and Engineering, UBMK 2024 -- Antalya -- 204906 | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Sentiment Analysis | en_US |
| dc.subject | Text Mining | en_US |
| dc.subject | Adversarial Machine Learning | en_US |
| dc.subject | Contrastive Learning | en_US |
| dc.subject | Deep Reinforcement Learning | en_US |
| dc.subject | Analysis Models | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | F1 Scores | en_US |
| dc.subject | Large-Scales | en_US |
| dc.subject | Learning Techniques | en_US |
| dc.subject | Machine-Learning | en_US |
| dc.subject | Positive/Negative | en_US |
| dc.subject | Sentiment Analysis | en_US |
| dc.subject | Text-Mining | en_US |
| dc.subject | Uncertainty | en_US |
| dc.subject | Tweets | en_US |
| dc.title | From Traditional to Deep: Evaluating Sentiment Analysis Models on a Large-Scale Tweet Dataset | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 59520315500 | |
| gdc.author.scopusid | 57074041500 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | true | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Mammadov] Alisahib, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Bakal] Gokhan, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey | en_US |
| gdc.description.endpage | 456 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 451 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4405272520 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5349236E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.4744335E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.22 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Bakal, Mehmet Gökhan | |
| relation.isAuthorOfPublication | 53ed538c-20d9-45c8-af59-7fa4d1b90cf7 | |
| relation.isAuthorOfPublication.latestForDiscovery | 53ed538c-20d9-45c8-af59-7fa4d1b90cf7 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
