Incorporating Worker Heterogeneity in Flexible Flow Shop Environment

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

ISRES Publishing

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

We study the flexible flow shop scheduling problem with the heterogeneous worker assignment. In many real-life manufacturing systems with flow shop environments, one of the fundamental scheduling challenges that needs to be addressed is job sequences across multiple workers. In addition, the manufacturing system may require workers to have different skills at various stages during their assignment. Therefore, worker availability at each stage may vary during the scheduling horizon. Unlike traditional flexible flow shop scheduling problem, where homogeneous workers are assumed, we consider workers with different skill levels, capabilities, and capacities. We present a mixed integer linear programming model to find the optimal sequence of job assignments, guaranteeing that jobs follow their predefined operation sequence while assigning workers with various skill sets in a flexible flow shop environment. The proposed model is tested at a battery manufacturing company. By analyzing the solution, we confirm its capability to represent the problem accurately. The proposed model offers a systematic scheduling approach for a flexible flow shop environment with a heterogeneous workforce and can be implemented in other industries. © 2025 Elsevier B.V., All rights reserved.

Description

Keywords

Flexible Workforce, Mixed Integer Linear Programming, Production Scheduling, Sustainability

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

Q4
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Eurasia Proceedings of Science, Technology, Engineering and Mathematics

Volume

34

Issue

Start Page

359

End Page

368
PlumX Metrics
Citations

Scopus : 1

Captures

Mendeley Readers : 1

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo