Prediction of Linear Cationic Antimicrobial Peptides Active Against Gram-Negative and Gram-Positive Bacteria Based on Machine Learning Models

dc.contributor.author Soylemez, Ummu Gulsum
dc.contributor.author Yousef, Malik
dc.contributor.author Kesmen, Zulal
dc.contributor.author Buyukkiraz, Mine Erdem
dc.contributor.author Bakir-Gungor, Burcu
dc.date.accessioned 2025-09-25T10:55:25Z
dc.date.available 2025-09-25T10:55:25Z
dc.date.issued 2022
dc.description Erdem Buyukkiraz, Mine/0000-0002-8724-0466; Yousef, Malik/0000-0001-8780-6303; Bakir-Gungor, Burcu/0000-0002-2272-6270; Kesmen, Zulal/0000-0002-4505-6871; Soylemez, Ummu Gulsum/0000-0002-6602-772X; en_US
dc.description.abstract Antimicrobial peptides (AMPs) are considered as promising alternatives to conventional antibiotics in order to overcome the growing problems of antibiotic resistance. Computational prediction approaches receive an increasing interest to identify and design the best candidate AMPs prior to the in vitro tests. In this study, we focused on the linear cationic peptides with non-hemolytic activity, which are downloaded from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP). Referring to the MIC (Minimum inhibition concentration) values, we have assigned a positive label to a peptide if it shows antimicrobial activity; otherwise, the peptide is labeled as negative. Here, we focused on the peptides showing antimicrobial activity against Gram-negative and against Gram-positive bacteria separately, and we created two datasets accordingly. Ten different physico-chemical properties of the peptides are calculated and used as features in our study. Following data exploration and data preprocessing steps, a variety of classification algorithms are used with 100-fold Monte Carlo Cross-Validation to build models and to predict the antimicrobial activity of the peptides. Among the generated models, Random Forest has resulted in the best performance metrics for both Gram-negative dataset (Accuracy: 0.98, Recall: 0.99, Specificity: 0.97, Precision: 0.97, AUC: 0.99, F1: 0.98) and Gram-positive dataset (Accuracy: 0.95, Recall: 0.95, Specificity: 0.95, Precision: 0.90, AUC: 0.97, F1: 0.92) after outlier elimination is applied. This prediction approach might be useful to evaluate the antibacterial potential of a candidate peptide sequence before moving to the experimental studies. en_US
dc.description.sponsorship Zefat Academic College; Abdullah Gul University Support Foundation (AGUV); TUBITAK 1001 program [120Z565] en_US
dc.description.sponsorship The work of M.Y. has been supported by the Zefat Academic College. The work of B.B.-G. has been supported by the Abdullah Gul University Support Foundation (AGUV). The works of Z.K. and M.E.B. have been supported by the TUBITAK 1001 program (Project No: 120Z565) to support scientific and technological research projects. en_US
dc.identifier.doi 10.3390/app12073631
dc.identifier.issn 2076-3417
dc.identifier.scopus 2-s2.0-85128212459
dc.identifier.uri https://doi.org/10.3390/app12073631
dc.identifier.uri https://hdl.handle.net/20.500.12573/4455
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Applied Sciences-Basel en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Antimicrobial Peptide (Amp) en_US
dc.subject Machine Learning en_US
dc.subject Classification Model en_US
dc.subject Antimicrobial Peptide Prediction en_US
dc.subject Antimicrobial Activity en_US
dc.subject Physico-Chemical Properties en_US
dc.subject Linear Cationic Antimicrobial Peptides en_US
dc.title Prediction of Linear Cationic Antimicrobial Peptides Active Against Gram-Negative and Gram-Positive Bacteria Based on Machine Learning Models en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Erdem Buyukkiraz, Mine/0000-0002-8724-0466
gdc.author.id Yousef, Malik/0000-0001-8780-6303
gdc.author.id Bakir-Gungor, Burcu/0000-0002-2272-6270
gdc.author.id Kesmen, Zulal/0000-0002-4505-6871
gdc.author.id Soylemez, Ummu Gulsum/0000-0002-6602-772X
gdc.author.scopusid 57576344400
gdc.author.scopusid 14029389000
gdc.author.scopusid 8668024500
gdc.author.scopusid 57575493800
gdc.author.scopusid 25932029800
gdc.author.wosid Gulsum, Ummu/Juv-2983-2023
gdc.author.wosid Erdem Büyükkiraz, Mine/Abc-1093-2021
gdc.author.wosid Kesmen, Zülal/B-2020-2016
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Soylemez, Ummu Gulsum] Mus Alparslan Univ, Fac Engn, Dept Comp Engn, TR-49100 Mus, Turkey; [Soylemez, Ummu Gulsum; Bakir-Gungor, Burcu] Abdullah Gul Univ, Fac Engn, Dept Comp Engn, TR-38170 Kayseri, Turkey; [Yousef, Malik] Zefat Acad Coll, Dept Informat Syst, IL-13206 Safed, Israel; [Kesmen, Zulal] Erciyes Univ, Fac Engn, Dept Food Engn, TR-38039 Kayseri, Turkey; [Buyukkiraz, Mine Erdem] Cappadocia Univ, Sch Hlth Sci, Dept Nutr & Dietet, TR-50420 Nevsehir, Turkey en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 3631
gdc.description.volume 12 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4226303323
gdc.identifier.wos WOS:000781591500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 107
gdc.oaire.impulse 23.0
gdc.oaire.influence 2.9828495E-9
gdc.oaire.isgreen true
gdc.oaire.keywords linear cationic antimicrobial peptides
gdc.oaire.keywords Technology
gdc.oaire.keywords antimicrobial activity
gdc.oaire.keywords classification model
gdc.oaire.keywords QH301-705.5
gdc.oaire.keywords antimicrobial peptide (AMP)
gdc.oaire.keywords T
gdc.oaire.keywords Physics
gdc.oaire.keywords QC1-999
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.keywords physico-chemical properties
gdc.oaire.keywords Design; Discovery; Protein; Classifier; Algorithms; Defensin; Systems; Tool
gdc.oaire.keywords antimicrobial peptide prediction
gdc.oaire.keywords Chemistry
gdc.oaire.keywords machine learning
gdc.oaire.keywords TA1-2040
gdc.oaire.keywords Biology (General)
gdc.oaire.keywords antimicrobial peptide (AMP); machine learning; classification model; antimicrobial peptide prediction; antimicrobial activity; physico-chemical properties; linear cationic antimicrobial peptides
gdc.oaire.keywords QD1-999
gdc.oaire.keywords biotechnology
gdc.oaire.popularity 1.9315491E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.views 220
gdc.openalex.collaboration International
gdc.openalex.fwci 4.5138092
gdc.openalex.normalizedpercentile 0.93
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 18
gdc.plumx.crossrefcites 22
gdc.plumx.facebookshareslikecount 123
gdc.plumx.mendeley 44
gdc.plumx.scopuscites 26
gdc.scopus.citedcount 26
gdc.virtual.author Güngör, Burcu
gdc.wos.citedcount 20
relation.isAuthorOfPublication e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isAuthorOfPublication.latestForDiscovery e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files