Shape Fidelity Evaluation of Alginate-Based Hydrogels Through Extrusion-Based Bioprinting
| dc.contributor.author | Temirel, Mikail | |
| dc.contributor.author | Dabbagh, Sajjad Rahmani | |
| dc.contributor.author | Tasoglu, Savas | |
| dc.date.accessioned | 2025-09-25T10:57:05Z | |
| dc.date.available | 2025-09-25T10:57:05Z | |
| dc.date.issued | 2022 | |
| dc.description | Rahmani Dabbagh, Sajjad/0000-0001-8888-6106; Tasoglu, Savas/0000-0003-4604-217X; | en_US |
| dc.description.abstract | Extrusion-based 3D bioprinting is a promising technique for fabricating multi-layered, complex biostructures, as it enables multi-material dispersion of bioinks with a straightforward procedure (particularly for users with limited additive manufacturing skills). Nonetheless, this method faces challenges in retaining the shape fidelity of the 3D-bioprinted structure, i.e., the collapse of filament (bioink) due to gravity and/or spreading of the bioink owing to the low viscosity, ultimately complicating the fabrication of multi-layered designs that can maintain the desired pore structure. While low viscosity is required to ensure a continuous flow of material (without clogging), a bioink should be viscous enough to retain its shape post-printing, highlighting the importance of bioink properties optimization. Here, two quantitative analyses are performed to evaluate shape fidelity. First, the filament collapse deformation is evaluated by printing different concentrations of alginate and its crosslinker (calcium chloride) by a co-axial nozzle over a platform to observe the overhanging deformation over time at two different ambient temperatures. In addition, a mathematical model is developed to estimate Young's modulus and filament collapse over time. Second, the printability of alginate is improved by optimizing gelatin concentrations and analyzing the pore size area. In addition, the biocompatibility of proposed bioinks is evaluated with a cell viability test. The proposed bioink (3% w/v gelatin in 4% alginate) yielded a 98% normalized pore number (high shape fidelity) while maintaining >90% cell viability five days after being bioprinted. Integration of quantitative analysis/simulations and 3D printing facilitate the determination of the optimum composition and concentration of different elements of a bioink to prevent filament collapse or bioink spreading (post-printing), ultimately resulting in high shape fidelity (i.e., retaining the shape) and printing quality. | en_US |
| dc.description.sponsorship | Tubitak 2232 International Fellowship for Outstanding Researchers Award [118C391]; Science Academy's Young Scientist Awards Program (BAGEP), Outstanding Young Scientists Awards (GEBIP); Science Academy's Young Scientist Awards Program (BAGEP); Outstanding Young Scientists Awards (GEBIP); Bilim Kahramanlari Dernegi The Young Scientist Award; Turkish Ministry of National Education fellowship | en_US |
| dc.description.sponsorship | S.T. acknowledges Tubitak 2232 International Fellowship for Outstanding Researchers Award (118C391), Alexander von Humboldt Research Fellowship for Experienced Researchers, Marie Sklodowska-Curie Individual Fellowship (101003361), and Royal Academy Newton-Katip Celebi Transforming Systems Through Partnership award (120N019) for financial support of this research. This work was partially supported by Science Academy's Young Scientist Awards Program (BAGEP), Outstanding Young Scientists Awards (GEBIP), and Bilim Kahramanlari Dernegi The Young Scientist Award. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the TUEBITAK. M.T. acknowledges the Turkish Ministry of National Education fellowship. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. | en_US |
| dc.identifier.doi | 10.3390/jfb13040225 | |
| dc.identifier.issn | 2079-4983 | |
| dc.identifier.scopus | 2-s2.0-85143911831 | |
| dc.identifier.uri | https://doi.org/10.3390/jfb13040225 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4627 | |
| dc.language.iso | en | en_US |
| dc.publisher | MDPI | en_US |
| dc.relation.ispartof | Journal of Functional Biomaterials | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Alginate | en_US |
| dc.subject | Bioink | en_US |
| dc.subject | Bioprinter | en_US |
| dc.subject | Extrusion | en_US |
| dc.subject | Gelatin | en_US |
| dc.subject | Shape Fidelity | en_US |
| dc.title | Shape Fidelity Evaluation of Alginate-Based Hydrogels Through Extrusion-Based Bioprinting | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Rahmani Dabbagh, Sajjad/0000-0001-8888-6106 | |
| gdc.author.id | Tasoglu, Savas/0000-0003-4604-217X | |
| gdc.author.scopusid | 57191925097 | |
| gdc.author.scopusid | 57221558543 | |
| gdc.author.scopusid | 24173862800 | |
| gdc.author.wosid | Temirel, Mikail/Hkf-3548-2023 | |
| gdc.author.wosid | Tasoglu, Savas/Hlh-6613-2023 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | true | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Temirel, Mikail] Univ Connecticut, Dept Biomed Engn, Storrs, CT 06269 USA; [Temirel, Mikail] Abdullah Gul Univ, Sch Engn, Mech Engn Dept, TR-38080 Kayseri, Turkey; [Dabbagh, Sajjad Rahmani; Tasoglu, Savas] Koc Univ, Dept Mech Engn, Sariyer, TR-34450 Istanbul, Turkey; [Tasoglu, Savas] Koc Univ, Koc Univ Arcelik Res Ctr Creat Ind KUAR, TR-34450 Istanbul, Turkey; [Tasoglu, Savas] Koc Univ, Koc Univ Translat Med Res Ctr KUTTAM, TR-34450 Istanbul, Turkey; [Tasoglu, Savas] Bogazici Univ, Bogaz Inst Biomed Engn, TR-34684 Istanbul, Turkey | en_US |
| gdc.description.issue | 4 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 225 | |
| gdc.description.volume | 13 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4308513357 | |
| gdc.identifier.pmid | 36412866 | |
| gdc.identifier.wos | WOS:000902567300001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.downloads | 65 | |
| gdc.oaire.impulse | 27.0 | |
| gdc.oaire.influence | 3.1213563E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Medicine (General) | |
| gdc.oaire.keywords | Extrusion | |
| gdc.oaire.keywords | Alginate | |
| gdc.oaire.keywords | Bioprinter | |
| gdc.oaire.keywords | Engineering; Materials science | |
| gdc.oaire.keywords | Shape fidelity | |
| gdc.oaire.keywords | bioink | |
| gdc.oaire.keywords | alginate; bioink; bioprinter; extrusion; gelatin; shape fidelity | |
| gdc.oaire.keywords | Materials science | |
| gdc.oaire.keywords | shape fidelity | |
| gdc.oaire.keywords | Article | |
| gdc.oaire.keywords | gelatin | |
| gdc.oaire.keywords | bioprinter | |
| gdc.oaire.keywords | Engineering | |
| gdc.oaire.keywords | extrusion | |
| gdc.oaire.keywords | R5-920 | |
| gdc.oaire.keywords | Alginate; Bioink; Bioprinter; Extrusion; Gelatin; Shape fidelity | |
| gdc.oaire.keywords | Bioink | |
| gdc.oaire.keywords | Gelatin | |
| gdc.oaire.keywords | alginate | |
| gdc.oaire.keywords | TP248.13-248.65 | |
| gdc.oaire.keywords | Biotechnology | |
| gdc.oaire.popularity | 2.2460648E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0301 basic medicine | |
| gdc.oaire.sciencefields | 0303 health sciences | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.views | 105 | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 3.21892373 | |
| gdc.openalex.normalizedpercentile | 0.88 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 15 | |
| gdc.plumx.crossrefcites | 26 | |
| gdc.plumx.mendeley | 73 | |
| gdc.plumx.pubmedcites | 4 | |
| gdc.plumx.scopuscites | 27 | |
| gdc.scopus.citedcount | 27 | |
| gdc.virtual.author | Temirel, Mikail | |
| gdc.wos.citedcount | 27 | |
| relation.isAuthorOfPublication | b42a434d-4ccb-4cd0-b67b-e2855467a2e2 | |
| relation.isAuthorOfPublication.latestForDiscovery | b42a434d-4ccb-4cd0-b67b-e2855467a2e2 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 206d9336-1d4b-45a2-a957-c641463cadea | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
