Target Attractor Formed via Fractional Feedback Control

dc.contributor.author Borisenok, Sergey
dc.date.accessioned 2025-09-25T10:58:38Z
dc.date.available 2025-09-25T10:58:38Z
dc.date.issued 2021
dc.description.abstract We discuss here the stabilization problem for an ordinary differential equation (ODE) dynamical model. To make such a control, one can form a Kolesnikov's subset attracting the phase trajectories to its neighborhood in the phase space via defining the appropriate feedback signal. Kolesnikov's target attractor algorithm provides the exponential convergence, but at the same time it demands the permanent power supply pumping the energy to the system even if the control goal is achieved. To decrease the power cost of Kolesnikov's control, we re-formulate the feedback in the form of Caputo's fractional derivative. In this case the solution to the ODE together with the feedback control signal could be found with the Rida-Arafa method based on the generalized Mittag-Leffler function. We prove that for the certain constraints over the initial condition and the target stabilization level, the integer-dimensional Kolesnikov algorithm can be replaced with the fractional target attractor feedback to provide the minimal power cost. en_US
dc.identifier.doi 10.14744/sigma.2021.00036
dc.identifier.issn 1304-7205
dc.identifier.issn 1304-7191
dc.identifier.scopus 2-s2.0-85149943088
dc.identifier.uri https://doi.org/10.14744/sigma.2021.00036
dc.identifier.uri https://hdl.handle.net/20.500.12573/4747
dc.language.iso en en_US
dc.publisher Yildiz Technical Univ en_US
dc.relation.ispartof Sigma Journal of Engineering and Natural Sciences-Sigma Muhendislik Ve Fen Bilimleri Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Feedback Control For Odes en_US
dc.subject Kolesnikov's Target Attractor en_US
dc.subject Power Cost en_US
dc.title Target Attractor Formed via Fractional Feedback Control en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Borisenok, Sergey
gdc.author.scopusid 14055402800
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Borisenok, Sergey] Abdullah Gul Univ, Fac Engn, Dept Elect & Elect Engn, Kayseri, Turkey; [Borisenok, Sergey] Bogazici Univ, Feza Gursey Ctr Phys & Math, Istanbul, Turkey en_US
gdc.description.endpage 17 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 14 en_US
gdc.description.volume 39 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q3
gdc.identifier.openalex W4207057127
gdc.identifier.wos WOS:000754729000002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 46
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen true
gdc.oaire.keywords power cost
gdc.oaire.keywords Kolesnikov’s target attractor
gdc.oaire.keywords Fractional feedback control for ODEs
gdc.oaire.popularity 1.5483943E-9
gdc.oaire.publicfunded false
gdc.oaire.views 123
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.16
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Borısenok, Sergey
gdc.wos.citedcount 0
relation.isAuthorOfPublication c6cd9cda-f721-4de6-aeec-0615863628a9
relation.isAuthorOfPublication.latestForDiscovery c6cd9cda-f721-4de6-aeec-0615863628a9
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication f22f14aa-23ad-40e4-bc25-b9705d4051ed
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files