NLP-Driven Fake News Detection: A Machine Learning Perspective

dc.contributor.author Coban, Mert Korkut
dc.contributor.author Bakal, Gokhan
dc.date.accessioned 2025-09-25T10:52:59Z
dc.date.available 2025-09-25T10:52:59Z
dc.date.issued 2025
dc.description.abstract The rapid spread of fake news poses a significant challenge, impacting public opinion, decision-making, and societal trust. This study explores the application of Natural Language Processing (NLP) and Machine Learning (ML) techniques for robust fake news detection. Using datasets such as ISOT Fake News, WELFake, and Football Fake News, the project employs advanced preprocessing methods and feature extraction techniques, including TF-IDF, Word2Vec, and GloVe. A comprehensive evaluation of machine learning models-Random Forest, Support Vector Machines (SVM), and Neural Networks-was conducted to identify the optimal configuration. Results demonstrate that Random Forest with TF-IDF excels in in-domain detection, achieving an F1-score of 99.70%, while Neural Networks paired with Word2Vec and GloVe embeddings outperform in cross-dataset scenarios. The study highlights the importance of dataset size, domain relevance, and feature representation in achieving high generalizability. These findings provide a scalable framework for combating misinformation on digital platforms. en_US
dc.identifier.doi 10.1109/ICHORA65333.2025.11017210
dc.identifier.isbn 9798331510893
dc.identifier.isbn 9798331510886
dc.identifier.issn 2996-4385
dc.identifier.scopus 2-s2.0-105008419979
dc.identifier.uri https://doi.org/10.1109/ICHORA65333.2025.11017210
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications-ICHORA -- MAY 23-24, 2025 -- Ankara, TURKIYE en_US
dc.relation.ispartofseries International Congress on Human-Computer Interaction Optimization and Robotic Applications
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fake News Detection en_US
dc.subject Natural Language Processing en_US
dc.subject Machine Learning en_US
dc.subject Text Mining en_US
dc.title NLP-Driven Fake News Detection: A Machine Learning Perspective en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.wosid Bakal, Mehmet Gokhan/Aat-2797-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gul University en_US
gdc.description.departmenttemp [Coban, Mert Korkut] Erciyes Univ, Dept Comp Engn, Kayseri, Turkiye; [Bakal, Gokhan] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkiye en_US
gdc.description.endpage 6
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4411207877
gdc.identifier.wos WOS:001533792800190
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.8669784E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 10.50550383
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Bakal, Mehmet Gökhan
gdc.wos.citedcount 0
relation.isAuthorOfPublication 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isAuthorOfPublication.latestForDiscovery 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files