Multi-Agent Context Learning Strategy for Interference-Aware Beam Allocation in mmWave Vehicular Communications

dc.contributor.author Kose, Abdulkadir
dc.contributor.author Lee, Haeyoung
dc.contributor.author Foh, Chuan Heng
dc.contributor.author Shojafar, Mohammad
dc.date.accessioned 2025-09-25T10:51:08Z
dc.date.available 2025-09-25T10:51:08Z
dc.date.issued 2024
dc.description Kose, Abdulkadir/0000-0002-6877-1392; Foh, Chuan Heng/0000-0002-5716-1396; Lee, Haeyoung/0000-0002-5760-6623 en_US
dc.description.abstract Millimeter wave (mmWave) has been recognized as one of key technologies for 5G and beyond networks due to its potential to enhance channel bandwidth and network capacity. The use of mmWave for various applications including vehicular communications has been extensively discussed. However, applying mmWave to vehicular communications faces challenges of high mobility nodes and narrow coverage along the mmWave beams. Due to high mobility in dense networks, overlapping beams can cause strong interference which leads to performance degradation. As a remedy, beam switching capability in mmWave can be utilized. Then, frequent beam switching and cell change become inevitable to manage interference, which increase computational and signalling complexity. In order to deal with the complexity in interference control, we develop a new strategy called Multi-Agent Context Learning (MACOL), which utilizes Contextual Bandit to manage interference while allocating mmWave beams to serve vehicles in the network. Our approach demonstrates that by leveraging knowledge of neighbouring beam status, the machine learning agent can identify and avoid potential interfering transmissions to other ongoing transmissions. Furthermore, we show that even under heavy traffic loads, our proposed MACOL strategy is able to maintain low interference levels at around 10%. en_US
dc.description.sponsorship Horizon 2020 Marie Sklstrok;odowska-Curie Actions en_US
dc.description.sponsorship No Statement Available en_US
dc.identifier.doi 10.1109/TITS.2024.3351488
dc.identifier.issn 1524-9050
dc.identifier.issn 1558-0016
dc.identifier.scopus 2-s2.0-85187266840
dc.identifier.uri https://doi.org/10.1109/TITS.2024.3351488
dc.identifier.uri https://hdl.handle.net/20.500.12573/4239
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof IEEE Transactions on Intelligent Transportation Systems en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Vehicular Networks en_US
dc.subject Mmwave en_US
dc.subject Beam Management en_US
dc.subject Machine Learning en_US
dc.subject Multi-Armed Bandit en_US
dc.title Multi-Agent Context Learning Strategy for Interference-Aware Beam Allocation in mmWave Vehicular Communications en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kose, Abdulkadir/0000-0002-6877-1392
gdc.author.id Foh, Chuan Heng/0000-0002-5716-1396
gdc.author.id Lee, Haeyoung/0000-0002-5760-6623
gdc.author.scopusid 56810884500
gdc.author.scopusid 55382750600
gdc.author.scopusid 6701713275
gdc.author.scopusid 26436114300
gdc.author.wosid Shojafar, Mohammad/C-9151-2013
gdc.author.wosid Lee, Haeyoung/M-7445-2019
gdc.author.wosid Foh, Chuan/A-3693-2011
gdc.author.wosid Kose, Abdulkadir/T-9913-2019
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Kose, Abdulkadir] Abdullah Gul Univ, Dept Comp Engn, TR-38080 Kayseri, Turkiye; [Lee, Haeyoung] Univ Hertfordshire, Sch Phys Engn & Comp Sci, Hatfield AL10 9EU, England; [Foh, Chuan Heng; Shojafar, Mohammad] Univ Surrey, Inst Commun Syst ICS, 5GIC & 6GIC, Guildford GU2 7XH, England en_US
gdc.description.endpage 7493 en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 7477 en_US
gdc.description.volume 25 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4392843915
gdc.identifier.wos WOS:001164170300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.8447475E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Computer Science - Machine Learning
gdc.oaire.keywords Electrical Engineering and Systems Science - Signal Processing
gdc.oaire.popularity 4.8605786E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 4.0608532
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.virtual.author Köse, Abdulkadir
gdc.wos.citedcount 8
relation.isAuthorOfPublication 42aba6b2-fe43-4ac7-9d7e-b936d6b2761f
relation.isAuthorOfPublication.latestForDiscovery 42aba6b2-fe43-4ac7-9d7e-b936d6b2761f
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files