Protein İkincil Yapı Tahmini için NR ve UniClust Veri Tabanlarının Karşılaştırılması
| dc.contributor.author | Aydin, Zafer | |
| dc.contributor.author | Kaynar, Oǧuz | |
| dc.contributor.author | Görmez, Yasin | |
| dc.date.accessioned | 2025-09-25T10:37:09Z | |
| dc.date.available | 2025-09-25T10:37:09Z | |
| dc.date.issued | 2018 | |
| dc.description | Aselsan; et al.; Huawei; IEEE Signal Processing Society; IEEE Turkey Section; Netas | en_US |
| dc.description.abstract | Three-dimensional structure prediction is one of the important problems in bioinformatics and theoretical chemistry. One of the most important steps in the three-dimensional structure prediction is the estimation of secondary structure. Improving the accuracy rate in protein secondary structure prediction depends on computed attributes as well as the classification algorithms. In multiple alignment methods, which are often used to extract an attribute, the calculated values differ according to the database used for the alignment. For this reason, it is important to use a suitable database against which the target proteins are aligned to compute profile feature vectors. In this study, 5 different datasets are generated for the CB513 benchmark with the aid of two different alignment methods and three different databases. The profile features are fed as input to a two-stage hybrid classifier. According to the experimental results, the highest accuracy rate is obtained when UniClust database is used at the first stage of HHBlits alignment to calculate PSSM values and NR database is used at the first stage of HHBlits alignment to calculate structural profile matrices. © 2018 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.1109/SIU.2018.8404285 | |
| dc.identifier.isbn | 9781538615010 | |
| dc.identifier.issn | 2165-0608 | |
| dc.identifier.scopus | 2-s2.0-85050815940 | |
| dc.identifier.uri | https://doi.org/10.1109/SIU.2018.8404285 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/2927 | |
| dc.language.iso | tr | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | -- 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- Izmir; Altin Yunus Resort ve Thermal Hotel -- 137780 | en_US |
| dc.relation.ispartofseries | Signal Processing and Communications Applications Conference | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Multi Alignment | en_US |
| dc.subject | Protein Database | en_US |
| dc.subject | Protein Structure Prediction | en_US |
| dc.subject | Secondary Structure Prediction | en_US |
| dc.subject | Alignment | en_US |
| dc.subject | Database Systems | en_US |
| dc.subject | Forecasting | en_US |
| dc.subject | Proteins | en_US |
| dc.subject | Classification Algorithm | en_US |
| dc.subject | Protein Database | en_US |
| dc.subject | Protein Secondary-Structure Prediction | en_US |
| dc.subject | Protein Structure Prediction | en_US |
| dc.subject | Secondary Structure Prediction | en_US |
| dc.subject | Secondary Structures | en_US |
| dc.subject | Theoretical Chemistry | en_US |
| dc.subject | Three-Dimensional Structure | en_US |
| dc.subject | Signal Processing | en_US |
| dc.title | Protein İkincil Yapı Tahmini için NR ve UniClust Veri Tabanlarının Karşılaştırılması | en_US |
| dc.title.alternative | Comparison of NR and UniClust Databases for Protein Secondary Structure Prediction | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 7003852510 | |
| gdc.author.scopusid | 36559569000 | |
| gdc.author.scopusid | 57195222392 | |
| gdc.author.wosid | Görmez, Yasin/Jef-8096-2023 | |
| gdc.author.wosid | Kaynar, Oguz/A-6474-2018 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Aydin] Zafer, Bilgisayar Mühendisliǧi, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Kaynar] Oǧuz, Yönetim Bilişim Sistemleri, Cumhuriyet Üniversitesi, Sivas, Turkey; [Görmez] Yasin, Yönetim Bilişim Sistemleri, Cumhuriyet Üniversitesi, Sivas, Turkey | en_US |
| gdc.description.endpage | 4 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1 | en_US |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W2873830881 | |
| gdc.identifier.wos | WOS:000511448500138 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5349236E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.0783119E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0301 basic medicine | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0206 medical engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.06 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Aydın, Zafer | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | a26c06af-eae3-407c-a21a-128459fa4d2f | |
| relation.isAuthorOfPublication.latestForDiscovery | a26c06af-eae3-407c-a21a-128459fa4d2f | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
