Parameter Investigation of Topological Data Analysis for EEG Signals

dc.contributor.author Altindis, Fatih
dc.contributor.author Yilmaz, Bulent
dc.contributor.author Borisenok, Sergey
dc.contributor.author Icoz, Kutay
dc.date.accessioned 2025-09-25T10:54:26Z
dc.date.available 2025-09-25T10:54:26Z
dc.date.issued 2021
dc.description Altindis, Fatih/0000-0002-3891-935X; Yilmaz, Bulent/0000-0003-2954-1217; Icoz, Kutay/0000-0002-0947-6166; Borisenok, Sergey/0000-0002-1992-628X en_US
dc.description.abstract Topological data analysis (TDA) methods have become appealing in EEG signal processing, because they may help the scientists explore new features of complex and large amount of data by simplifying the process from a geometrical perspective. Time delay embedding is a common approach to embed EEG signals into the state space. Parameters of this embedding method are variable and the structure of the state space can be entirely different depending on their selection. Additionally, extracted persistent homologies of the state spaces depend on filtration level and the number of points used. In this study, we showed how to adapt false nearest neighbor (FNN) test to find out the suitable/optimal time embedding parameters (i.e., time delay and embedding dimension) for EEG signals, and compared their effects on different types of artefacts and motor intention waves that are commonly used in brain-computer interfaces. We extracted and compared persistent homologies of state spaces that were reconstructed with four different sets of parameters. Later, the effect of filtration level on extracted persistent homologies was compared, and statistical significance levels were computed between leftand right-hand movement imaginations. Finally, computational cost of the discussed methods was found, and the adaptability of this method to a real-time application was evaluated. We demonstrated that the discussed parameters of the TDA approach were highly crucial to extract true topological features of the EEG signals, and the adapted testing approaches depicted the applicability of this approach on real-time analysis of EEG signals. en_US
dc.description.sponsorship Abdullah Gul University Scientific Research Projects Coordination Department [TOA-2015-31] en_US
dc.description.sponsorship This study was supported by Abdullah Gul University Scientific Research Projects Coordination Department. Project No: TOA-2015-31. en_US
dc.identifier.doi 10.1016/j.bspc.2020.102196
dc.identifier.issn 1746-8094
dc.identifier.issn 1746-8108
dc.identifier.scopus 2-s2.0-85091094633
dc.identifier.uri https://doi.org/10.1016/j.bspc.2020.102196
dc.identifier.uri https://hdl.handle.net/20.500.12573/4382
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.ispartof Biomedical Signal Processing and Control en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Topological Data Analysis en_US
dc.subject EEG en_US
dc.subject Brain-Computer Interface en_US
dc.subject Persistent Homology en_US
dc.subject False Nearest Neighbors en_US
dc.subject Motor Intention Waves en_US
dc.title Parameter Investigation of Topological Data Analysis for EEG Signals en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Altindis, Fatih/0000-0002-3891-935X
gdc.author.id Yilmaz, Bulent/0000-0003-2954-1217
gdc.author.id Icoz, Kutay/0000-0002-0947-6166
gdc.author.id Borisenok, Sergey/0000-0002-1992-628X
gdc.author.scopusid 57193720164
gdc.author.scopusid 57189925966
gdc.author.scopusid 14055402800
gdc.author.scopusid 24801985000
gdc.author.wosid Yilmaz, Bulent/Juz-1320-2023
gdc.author.wosid Icoz, Kutay/J-2063-2015
gdc.author.wosid Altindis, Fatih/Aag-4770-2021
gdc.author.wosid Icoz, Kutay/Abi-3903-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Altindis, Fatih; Yilmaz, Bulent; Borisenok, Sergey; Icoz, Kutay] Abdullah Gul Univ, Elect & Elect Engn Dept, TR-38080 Kayseri, Turkey; [Yilmaz, Bulent; Icoz, Kutay] Abdullah Gul Univ, Bioengn Dept, TR-38080 Kayseri, Turkey; [Altindis, Fatih; Yilmaz, Bulent] Abdullah Gul Univ, BISA Biomed Instrumentat & Signal Anal Lab, TR-38080 Kayseri, Turkey; [Icoz, Kutay] Abdullah Gul Univ, BioMINDS Bio Micro Nano Devices & Sensors Lab, TR-38080 Kayseri, Turkey; [Borisenok, Sergey] Bogazici Univ, Feza Gursey Ctr Phys & Math, TR-34684 Istanbul, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 102196
gdc.description.volume 63 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3087412765
gdc.identifier.wos WOS:000591530700015
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 17.0
gdc.oaire.influence 3.6001107E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.5690201E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.openalex.collaboration National
gdc.openalex.fwci 1.76505728
gdc.openalex.normalizedpercentile 0.88
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 18
gdc.plumx.crossrefcites 20
gdc.plumx.mendeley 31
gdc.plumx.scopuscites 20
gdc.scopus.citedcount 20
gdc.virtual.author Altındiş, Fatih
gdc.virtual.author Borısenok, Sergey
gdc.virtual.author İçöz, Kutay
gdc.wos.citedcount 16
relation.isAuthorOfPublication 22cc2238-8fd3-4783-aa91-d8f69c83ece6
relation.isAuthorOfPublication c6cd9cda-f721-4de6-aeec-0615863628a9
relation.isAuthorOfPublication 23d8466c-761d-4ddb-9a4d-e4feacbf60a9
relation.isAuthorOfPublication.latestForDiscovery 22cc2238-8fd3-4783-aa91-d8f69c83ece6
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication f22f14aa-23ad-40e4-bc25-b9705d4051ed
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files