Consensus Embedding for Multiple Networks: Computation and Applications

dc.contributor.author Li, Mengzhen
dc.contributor.author Coskun, Mustafa
dc.contributor.author Koyuturk, Mehmet
dc.date.accessioned 2025-09-25T10:43:08Z
dc.date.available 2025-09-25T10:43:08Z
dc.date.issued 2022
dc.description Coskun, Mustafa/0000-0003-4805-1416; Li, Mengzhen/0000-0002-2266-4313 en_US
dc.description.abstract Machine learning applications on large-scale network-structured data commonly encode network information in the form of node embeddings. Network embedding algorithms map the nodes into a low-dimensional space such that the nodes that are "similar" with respect to network topology are also close to each other in the embedding space. Real-world networks often have multiple versions or can be "multiplex" with multiple types of edges with different semantics. For such networks, computation of Consensus Embeddings based on the node embeddings of individual versions can be useful for various reasons, including privacy, efficiency, and effectiveness of analyses. Here, we systematically investigate the performance of three dimensionality reduction methods in computing consensus embeddings on networks with multiple versions: singular value decomposition, variational auto-encoders, and canonical correlation analysis (CCA). Our results show that (i) CCA outperforms other dimensionality reduction methods in computing concensus embeddings, (ii) in the context of link prediction, consensus embeddings can be used to make predictions with accuracy close to that provided by embeddings of integrated networks, and (iii) consensus embeddings can be used to improve the efficiency of combinatorial link prediction queries on multiple networks by multiple orders of magnitude. en_US
dc.identifier.doi 10.1017/nws.2022.17
dc.identifier.issn 2050-1242
dc.identifier.issn 2050-1250
dc.identifier.scopus 2-s2.0-85135294909
dc.identifier.uri https://doi.org/10.1017/nws.2022.17
dc.identifier.uri https://hdl.handle.net/20.500.12573/3530
dc.language.iso en en_US
dc.publisher Cambridge Univ Press en_US
dc.relation.ispartof Network Science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Consensus Embedding en_US
dc.subject Dimensionality Reduction Methods en_US
dc.subject Link Prediction en_US
dc.title Consensus Embedding for Multiple Networks: Computation and Applications en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Coskun, Mustafa/0000-0003-4805-1416
gdc.author.id Li, Mengzhen/0000-0002-2266-4313
gdc.author.scopusid 57222186299
gdc.author.scopusid 57189031203
gdc.author.scopusid 8897820600
gdc.author.wosid Coskun, Mustafa/Kod-5642-2024
gdc.author.wosid Li, Mengzhen/Hhs-7801-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Li, Mengzhen; Koyuturk, Mehmet] Case Western Reserve Univ, Dept Comp & Data Sci, Cleveland, OH 44106 USA; [Coskun, Mustafa] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkey en_US
gdc.description.endpage 206 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 190 en_US
gdc.description.volume 10 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q2
gdc.identifier.openalex W4281763047
gdc.identifier.wos WOS:000802806100001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.downloads 57
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.7217213E-9
gdc.oaire.isgreen true
gdc.oaire.keywords consensus embedding
gdc.oaire.keywords dimensionality reduction methods
gdc.oaire.keywords link prediction
gdc.oaire.popularity 4.1036357E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 109
gdc.openalex.collaboration International
gdc.openalex.fwci 0.39159764
gdc.openalex.normalizedpercentile 0.6
gdc.opencitations.count 0
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.wos.citedcount 3
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files