Super Resolution Convolutional Neural Network Based Pre-Processing for Automatic Polyp Detection in Colonoscopy Images

dc.contributor.author Tas, Merve
dc.contributor.author Yilmaz, Bulent
dc.date.accessioned 2025-09-25T10:58:01Z
dc.date.available 2025-09-25T10:58:01Z
dc.date.issued 2021
dc.description Yilmaz, Bulent/0000-0003-2954-1217; Tas, Merve/0000-0003-4877-3347 en_US
dc.description.abstract Colonoscopy is the most common methodology used to detect polyps on the colon surface. Increasing the image resolution has the potential to improve the automatic colonoscopy based diagnosis and polyp detection and localization. In this study, we proposed a pre-processing approach that uses convolutional neural network based super resolution method (SRCNN) to increase the resolution of the training colonoscopy images before the localization of polyps. We also investigated the use of CNN based models such as the Single Shot MultiBox Detector (SSD) and Faster Regional CNN (RCNN) for real-time polyp detection and localization. Our results showed that using SRCNN method before the training process provides better results in terms of accuracy in both models compared to the low-resolution cases. Furthermore, we reached an F2 score of 0.945 for the correct localization of colon polyps using Faster RCNN with ResNet-101 feature extractor. en_US
dc.description.sponsorship Turkish Higher Education Council [100/2000] en_US
dc.description.sponsorship The first author, Merve Tas, was supported by the Turkish Higher Education Council's 100/2000 Scholarship Program. en_US
dc.identifier.doi 10.1016/j.compeleceng.2020.106959
dc.identifier.issn 0045-7906
dc.identifier.issn 1879-0755
dc.identifier.scopus 2-s2.0-85099781825
dc.identifier.uri https://doi.org/10.1016/j.compeleceng.2020.106959
dc.identifier.uri https://hdl.handle.net/20.500.12573/4707
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.relation.ispartof Computers & Electrical Engineering en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep Learning en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Transfer Learning en_US
dc.subject Super Resolution en_US
dc.subject Colonoscopy en_US
dc.subject Colon Polyp Localization en_US
dc.title Super Resolution Convolutional Neural Network Based Pre-Processing for Automatic Polyp Detection in Colonoscopy Images en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Yilmaz, Bulent/0000-0003-2954-1217
gdc.author.id Tas, Merve/0000-0003-4877-3347
gdc.author.scopusid 59203624500
gdc.author.scopusid 57189925966
gdc.author.wosid Yilmaz, Bulent/Juz-1320-2023
gdc.author.wosid Taş, Merve/Hgv-0853-2022
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Tas, Merve; Yilmaz, Bulent] Abdullah Gul Univ, Grad Sch Engn & Nat Sci, Dept Elect & Comp Engn, Kayseri, Turkey; [Yilmaz, Bulent] Abdullah Gul Univ, Sch Engn, Dept Elect Elect Engn, Kayseri, Turkey; [Tas, Merve; Yilmaz, Bulent] Abdullah Gul Univ, Sch Engn, Biomed Instrumentat & Signal Anal Lab BISA, Kayseri, Turkey; [Yilmaz, Bulent] Abdullah Gul Univ, Sch Life & Nat Sci, Dept Bioengn, Kayseri, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 106959
gdc.description.volume 90 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3121729577
gdc.identifier.wos WOS:000644328200004
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 17.0
gdc.oaire.influence 4.0565262E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.1814532E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 2.14660906
gdc.openalex.normalizedpercentile 0.88
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 19
gdc.plumx.crossrefcites 25
gdc.plumx.mendeley 35
gdc.plumx.scopuscites 28
gdc.scopus.citedcount 28
gdc.wos.citedcount 26
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files