Classification of Apple Images Using Support Vector Machines and Deep Residual Networks
| dc.contributor.author | Adige, Sevim | |
| dc.contributor.author | Kurban, Rifat | |
| dc.contributor.author | Durmus, Ali | |
| dc.contributor.author | Karakose, Ercan | |
| dc.date.accessioned | 2025-09-25T10:42:29Z | |
| dc.date.available | 2025-09-25T10:42:29Z | |
| dc.date.issued | 2023 | |
| dc.description | Karakose, Ercan/0000-0001-5586-3258; Kurban, Rifat/0000-0002-0277-2210; Durmus, Ali/0000-0001-8283-8496 | en_US |
| dc.description.abstract | One of the most important problems for farmers who produce large amounts of apples is the classification of the apples according to their types in a short time without handling them. Support vector machines (SVM) and deep residual networks (ResNet-50) are machine learning methods that are able to solve general classification situations. In this study, the classification of apple varieties according to their genus is made using machine learning algorithms. A database is created by capturing 120 images from six different apple species. Bag of visual words (BoVW) treat image features as words representing a sparse vector of occurrences over the vocabulary. BoVW features are classified using SVM. On the other hand, ResNet-50 is a convolutional neural network that is 50 layers deep with embedded feature extraction layers. The pre-trained ResNet-50 architecture is retrained for apple classification using transfer learning. In the experiments, our dataset is divided into three cases: Case 1: 40% train, 60% test; Case 2: 60% train, 40% test; and Case 3: 80% train, 20% test. As a result, the linear, Gaussian, and polynomial kernel functions used in the BoVW + SVM algorithm achieved 88%, 92%, and 96% accuracy in Case 3, respectively. In the ResNet-50 classification, the root-mean-square propagation (rmsprop), adaptive moment estimation (adam), and stochastic gradient descent with momentum (sgdm) training algorithms achieved 86%, 89%, and 90% accuracy, respectively, in the set of Case 3. | en_US |
| dc.description.sponsorship | Kayseri University Scientific Research Projects Unit [FYL-2022-1059] | en_US |
| dc.description.sponsorship | AcknowledgementsThis research was financially supported by Kayseri University Scientific Research Projects Unit (Project No. BAP, FYL-2022-1059). | en_US |
| dc.identifier.doi | 10.1007/s00521-023-08340-3 | |
| dc.identifier.issn | 0941-0643 | |
| dc.identifier.issn | 1433-3058 | |
| dc.identifier.scopus | 2-s2.0-85148440988 | |
| dc.identifier.uri | https://doi.org/10.1007/s00521-023-08340-3 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3457 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer London Ltd | en_US |
| dc.relation.ispartof | Neural Computing and Applications | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Support Vector Machines | en_US |
| dc.subject | Deep Residual Networks | en_US |
| dc.subject | Apple Classification | en_US |
| dc.title | Classification of Apple Images Using Support Vector Machines and Deep Residual Networks | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Karakose, Ercan/0000-0001-5586-3258 | |
| gdc.author.id | Kurban, Rifat/0000-0002-0277-2210 | |
| gdc.author.id | Durmus, Ali/0000-0001-8283-8496 | |
| gdc.author.scopusid | 58109021600 | |
| gdc.author.scopusid | 24729361200 | |
| gdc.author.scopusid | 57211875077 | |
| gdc.author.scopusid | 23018559800 | |
| gdc.author.wosid | Durmus, Ali/B-6677-2014 | |
| gdc.author.wosid | Kurban, Rifat/B-1175-2012 | |
| gdc.author.wosid | Karaköse, Ercan/Abc-9395-2020 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Adige, Sevim] Kayseri Univ, Dept Grad Educ Inst, Elect Elect Engn, Kayseri, Turkiye; [Kurban, Rifat] Kayseri Univ, Vocat Sch Tech Sci, Dept Comp Technol, Kayseri, Turkiye; [Durmus, Ali] Kayseri Univ, Vocat Sch Tech Sci, Dept Elect & Energy, Kayseri, Turkiye; [Karakose, Ercan] Kayseri Univ, Engn & Architecture & Design Fac, Dept Nat Sci, Kayseri, Turkiye; [Kurban, Rifat] Abdullah Gul Univ, Engn Fac, Dept Comp Engn, Kayseri, Turkiye | en_US |
| gdc.description.endpage | 12087 | en_US |
| gdc.description.issue | 16 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 12073 | en_US |
| gdc.description.volume | 35 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4321436707 | |
| gdc.identifier.wos | WOS:000936082200001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 27.0 | |
| gdc.oaire.influence | 3.8308E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.2838949E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 7.39704651 | |
| gdc.openalex.normalizedpercentile | 0.98 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 20 | |
| gdc.plumx.mendeley | 21 | |
| gdc.plumx.scopuscites | 29 | |
| gdc.scopus.citedcount | 30 | |
| gdc.virtual.author | Kurban, Rifat | |
| gdc.wos.citedcount | 17 | |
| relation.isAuthorOfPublication | f55f9796-680f-4dd5-9c98-e43d0ffee812 | |
| relation.isAuthorOfPublication.latestForDiscovery | f55f9796-680f-4dd5-9c98-e43d0ffee812 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
