Classification of Apple Images Using Support Vector Machines and Deep Residual Networks

dc.contributor.author Adige, Sevim
dc.contributor.author Kurban, Rifat
dc.contributor.author Durmus, Ali
dc.contributor.author Karakose, Ercan
dc.date.accessioned 2025-09-25T10:42:29Z
dc.date.available 2025-09-25T10:42:29Z
dc.date.issued 2023
dc.description Karakose, Ercan/0000-0001-5586-3258; Kurban, Rifat/0000-0002-0277-2210; Durmus, Ali/0000-0001-8283-8496 en_US
dc.description.abstract One of the most important problems for farmers who produce large amounts of apples is the classification of the apples according to their types in a short time without handling them. Support vector machines (SVM) and deep residual networks (ResNet-50) are machine learning methods that are able to solve general classification situations. In this study, the classification of apple varieties according to their genus is made using machine learning algorithms. A database is created by capturing 120 images from six different apple species. Bag of visual words (BoVW) treat image features as words representing a sparse vector of occurrences over the vocabulary. BoVW features are classified using SVM. On the other hand, ResNet-50 is a convolutional neural network that is 50 layers deep with embedded feature extraction layers. The pre-trained ResNet-50 architecture is retrained for apple classification using transfer learning. In the experiments, our dataset is divided into three cases: Case 1: 40% train, 60% test; Case 2: 60% train, 40% test; and Case 3: 80% train, 20% test. As a result, the linear, Gaussian, and polynomial kernel functions used in the BoVW + SVM algorithm achieved 88%, 92%, and 96% accuracy in Case 3, respectively. In the ResNet-50 classification, the root-mean-square propagation (rmsprop), adaptive moment estimation (adam), and stochastic gradient descent with momentum (sgdm) training algorithms achieved 86%, 89%, and 90% accuracy, respectively, in the set of Case 3. en_US
dc.description.sponsorship Kayseri University Scientific Research Projects Unit [FYL-2022-1059] en_US
dc.description.sponsorship AcknowledgementsThis research was financially supported by Kayseri University Scientific Research Projects Unit (Project No. BAP, FYL-2022-1059). en_US
dc.identifier.doi 10.1007/s00521-023-08340-3
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-85148440988
dc.identifier.uri https://doi.org/10.1007/s00521-023-08340-3
dc.identifier.uri https://hdl.handle.net/20.500.12573/3457
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.ispartof Neural Computing and Applications en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Support Vector Machines en_US
dc.subject Deep Residual Networks en_US
dc.subject Apple Classification en_US
dc.title Classification of Apple Images Using Support Vector Machines and Deep Residual Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Karakose, Ercan/0000-0001-5586-3258
gdc.author.id Kurban, Rifat/0000-0002-0277-2210
gdc.author.id Durmus, Ali/0000-0001-8283-8496
gdc.author.scopusid 58109021600
gdc.author.scopusid 24729361200
gdc.author.scopusid 57211875077
gdc.author.scopusid 23018559800
gdc.author.wosid Durmus, Ali/B-6677-2014
gdc.author.wosid Kurban, Rifat/B-1175-2012
gdc.author.wosid Karaköse, Ercan/Abc-9395-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Adige, Sevim] Kayseri Univ, Dept Grad Educ Inst, Elect Elect Engn, Kayseri, Turkiye; [Kurban, Rifat] Kayseri Univ, Vocat Sch Tech Sci, Dept Comp Technol, Kayseri, Turkiye; [Durmus, Ali] Kayseri Univ, Vocat Sch Tech Sci, Dept Elect & Energy, Kayseri, Turkiye; [Karakose, Ercan] Kayseri Univ, Engn & Architecture & Design Fac, Dept Nat Sci, Kayseri, Turkiye; [Kurban, Rifat] Abdullah Gul Univ, Engn Fac, Dept Comp Engn, Kayseri, Turkiye en_US
gdc.description.endpage 12087 en_US
gdc.description.issue 16 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 12073 en_US
gdc.description.volume 35 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality N/A
gdc.identifier.openalex W4321436707
gdc.identifier.wos WOS:000936082200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 27.0
gdc.oaire.influence 3.8308E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.2838949E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 7.39704651
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 20
gdc.plumx.mendeley 21
gdc.plumx.scopuscites 29
gdc.scopus.citedcount 30
gdc.virtual.author Kurban, Rifat
gdc.wos.citedcount 17
relation.isAuthorOfPublication f55f9796-680f-4dd5-9c98-e43d0ffee812
relation.isAuthorOfPublication.latestForDiscovery f55f9796-680f-4dd5-9c98-e43d0ffee812
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files