Novel Antimicrobial Peptide Design Using Motif Match Score Representation

dc.contributor.author Soylemez, Ummu Gulsum
dc.contributor.author Yousef, Malik
dc.contributor.author Kesmen, Zulal
dc.contributor.author Bakir-Gungor, Burcu
dc.date.accessioned 2025-09-25T10:53:20Z
dc.date.available 2025-09-25T10:53:20Z
dc.date.issued 2024
dc.description Yousef, Malik/0000-0001-8780-6303; Bakir-Gungor, Burcu/0000-0002-2272-6270 en_US
dc.description.abstract Antimicrobial peptides (AMPs) have drawn the interest of the researchers since they offer an alternative to the traditional antibiotics in the fight against antibiotic resistance and they exhibit additional pharmaceutically significant properties. Recently, computational approaches attemp to reveal how antibacterial activity is determined from a machine learning perspective and they aim to search and find the biological cues or characteristics that control antimicrobial activity via incorporating motif match scores. This study is dedicated to the development of a machine learning framework aimed at devising novel antimicrobial peptide (AMP) sequences potentially effective against Gram-positive/Gram-negative bacteria. In order to design newly generated sequences classified as either AMP or non-AMP, various classification models were trained. These novel sequences underwent validation utilizing the "DBAASP: strain-specific antibacterial prediction based on machine learning approaches and data on AMP sequences" tool. The findings presented herein represent a significant stride in this computational research, streamlining the process of AMP creation or modification within wet lab environments. en_US
dc.description.sponsorship TUBITAK 1001 program [120Z565] en_US
dc.description.sponsorship This work was supported by the TUBITAK 1001 program under Grant 120Z565 to support scientific and technological research projects. en_US
dc.identifier.doi 10.1109/TCBB.2024.3413021
dc.identifier.issn 1545-5963
dc.identifier.issn 1557-9964
dc.identifier.issn 2374-0043
dc.identifier.scopus 2-s2.0-85196060857
dc.identifier.uri https://doi.org/10.1109/TCBB.2024.3413021
dc.identifier.uri https://hdl.handle.net/20.500.12573/4291
dc.language.iso en en_US
dc.publisher IEEE Computer Soc en_US
dc.relation.ispartof IEEE-Acm Transactions on Computational Biology and Bioinformatics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Peptides en_US
dc.subject Amino Acids en_US
dc.subject Microorganisms en_US
dc.subject Machine Learning en_US
dc.subject Computational Modeling en_US
dc.subject Support Vector Machines en_US
dc.subject Immune System en_US
dc.subject Antimicrobial Peptide (Amp) Prediction en_US
dc.subject Novel Peptides en_US
dc.subject Gram-Negative Bacteria en_US
dc.subject Gram-Positive Bacteria en_US
dc.subject Motif Match Score en_US
dc.title Novel Antimicrobial Peptide Design Using Motif Match Score Representation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Yousef, Malik/0000-0001-8780-6303
gdc.author.id Bakir-Gungor, Burcu/0000-0002-2272-6270
gdc.author.scopusid 57576344400
gdc.author.scopusid 14029389000
gdc.author.scopusid 25932029800
gdc.author.wosid Gulsum, Ummu/Juv-2983-2023
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Soylemez, Ummu Gulsum] Mus Alparslan Univ, Software Engn Dept, TR-49000 Mus, Turkiye; [Yousef, Malik] Zefat Acad Coll, Informat Syst Dept, IL-13206 Safed, Israel; [Kesmen, Zulal] Erciyes Univ, Fac Engn, Dept Food Engn, TR-38039 Kayseri, Turkiye; [Bakir-Gungor, Burcu] Abdullah Gul Univ, Fac Engn, Dept Comp Engn, TR-38080 Kayseri, Turkiye en_US
gdc.description.endpage 1666 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1656 en_US
gdc.description.volume 21 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4399562821
gdc.identifier.pmid 38865233
gdc.identifier.wos WOS:001375991100008
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.521918E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Support vector machines
gdc.oaire.keywords Amino Acid Motifs
gdc.oaire.keywords Microorganisms
gdc.oaire.keywords Computational Biology
gdc.oaire.keywords Antimicrobial peptide prediction
gdc.oaire.keywords Computational modeling
gdc.oaire.keywords Gram-positive bacteria
gdc.oaire.keywords novel peptides
gdc.oaire.keywords Anti-Bacterial Agents
gdc.oaire.keywords Machine Learning
gdc.oaire.keywords Immune system
gdc.oaire.keywords Gram-negative bacteria
gdc.oaire.keywords Drug Design
gdc.oaire.keywords Machine learning
gdc.oaire.keywords Amino acids
gdc.oaire.keywords Peptides
gdc.oaire.keywords motif match score
gdc.oaire.keywords Antimicrobial Peptides
gdc.oaire.keywords Algorithms
gdc.oaire.keywords Amino Acid Sequence
gdc.oaire.popularity 3.8585024E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 1.9209889
gdc.openalex.normalizedpercentile 0.76
gdc.opencitations.count 0
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 4
gdc.plumx.pubmedcites 1
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Güngör, Burcu
gdc.wos.citedcount 4
relation.isAuthorOfPublication e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isAuthorOfPublication.latestForDiscovery e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files