Novel Antimicrobial Peptide Design Using Motif Match Score Representation
| dc.contributor.author | Soylemez, Ummu Gulsum | |
| dc.contributor.author | Yousef, Malik | |
| dc.contributor.author | Kesmen, Zulal | |
| dc.contributor.author | Bakir-Gungor, Burcu | |
| dc.date.accessioned | 2025-09-25T10:53:20Z | |
| dc.date.available | 2025-09-25T10:53:20Z | |
| dc.date.issued | 2024 | |
| dc.description | Yousef, Malik/0000-0001-8780-6303; Bakir-Gungor, Burcu/0000-0002-2272-6270 | en_US |
| dc.description.abstract | Antimicrobial peptides (AMPs) have drawn the interest of the researchers since they offer an alternative to the traditional antibiotics in the fight against antibiotic resistance and they exhibit additional pharmaceutically significant properties. Recently, computational approaches attemp to reveal how antibacterial activity is determined from a machine learning perspective and they aim to search and find the biological cues or characteristics that control antimicrobial activity via incorporating motif match scores. This study is dedicated to the development of a machine learning framework aimed at devising novel antimicrobial peptide (AMP) sequences potentially effective against Gram-positive/Gram-negative bacteria. In order to design newly generated sequences classified as either AMP or non-AMP, various classification models were trained. These novel sequences underwent validation utilizing the "DBAASP: strain-specific antibacterial prediction based on machine learning approaches and data on AMP sequences" tool. The findings presented herein represent a significant stride in this computational research, streamlining the process of AMP creation or modification within wet lab environments. | en_US |
| dc.description.sponsorship | TUBITAK 1001 program [120Z565] | en_US |
| dc.description.sponsorship | This work was supported by the TUBITAK 1001 program under Grant 120Z565 to support scientific and technological research projects. | en_US |
| dc.identifier.doi | 10.1109/TCBB.2024.3413021 | |
| dc.identifier.issn | 1545-5963 | |
| dc.identifier.issn | 1557-9964 | |
| dc.identifier.issn | 2374-0043 | |
| dc.identifier.scopus | 2-s2.0-85196060857 | |
| dc.identifier.uri | https://doi.org/10.1109/TCBB.2024.3413021 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4291 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE Computer Soc | en_US |
| dc.relation.ispartof | IEEE-Acm Transactions on Computational Biology and Bioinformatics | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Peptides | en_US |
| dc.subject | Amino Acids | en_US |
| dc.subject | Microorganisms | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Computational Modeling | en_US |
| dc.subject | Support Vector Machines | en_US |
| dc.subject | Immune System | en_US |
| dc.subject | Antimicrobial Peptide (Amp) Prediction | en_US |
| dc.subject | Novel Peptides | en_US |
| dc.subject | Gram-Negative Bacteria | en_US |
| dc.subject | Gram-Positive Bacteria | en_US |
| dc.subject | Motif Match Score | en_US |
| dc.title | Novel Antimicrobial Peptide Design Using Motif Match Score Representation | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Yousef, Malik/0000-0001-8780-6303 | |
| gdc.author.id | Bakir-Gungor, Burcu/0000-0002-2272-6270 | |
| gdc.author.scopusid | 57576344400 | |
| gdc.author.scopusid | 14029389000 | |
| gdc.author.scopusid | 25932029800 | |
| gdc.author.wosid | Gulsum, Ummu/Juv-2983-2023 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Soylemez, Ummu Gulsum] Mus Alparslan Univ, Software Engn Dept, TR-49000 Mus, Turkiye; [Yousef, Malik] Zefat Acad Coll, Informat Syst Dept, IL-13206 Safed, Israel; [Kesmen, Zulal] Erciyes Univ, Fac Engn, Dept Food Engn, TR-38039 Kayseri, Turkiye; [Bakir-Gungor, Burcu] Abdullah Gul Univ, Fac Engn, Dept Comp Engn, TR-38080 Kayseri, Turkiye | en_US |
| gdc.description.endpage | 1666 | en_US |
| gdc.description.issue | 6 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 1656 | en_US |
| gdc.description.volume | 21 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4399562821 | |
| gdc.identifier.pmid | 38865233 | |
| gdc.identifier.wos | WOS:001375991100008 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.521918E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Support vector machines | |
| gdc.oaire.keywords | Amino Acid Motifs | |
| gdc.oaire.keywords | Microorganisms | |
| gdc.oaire.keywords | Computational Biology | |
| gdc.oaire.keywords | Antimicrobial peptide prediction | |
| gdc.oaire.keywords | Computational modeling | |
| gdc.oaire.keywords | Gram-positive bacteria | |
| gdc.oaire.keywords | novel peptides | |
| gdc.oaire.keywords | Anti-Bacterial Agents | |
| gdc.oaire.keywords | Machine Learning | |
| gdc.oaire.keywords | Immune system | |
| gdc.oaire.keywords | Gram-negative bacteria | |
| gdc.oaire.keywords | Drug Design | |
| gdc.oaire.keywords | Machine learning | |
| gdc.oaire.keywords | Amino acids | |
| gdc.oaire.keywords | Peptides | |
| gdc.oaire.keywords | motif match score | |
| gdc.oaire.keywords | Antimicrobial Peptides | |
| gdc.oaire.keywords | Algorithms | |
| gdc.oaire.keywords | Amino Acid Sequence | |
| gdc.oaire.popularity | 3.8585024E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 1.9209889 | |
| gdc.openalex.normalizedpercentile | 0.76 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.pubmedcites | 1 | |
| gdc.plumx.scopuscites | 4 | |
| gdc.scopus.citedcount | 4 | |
| gdc.virtual.author | Güngör, Burcu | |
| gdc.wos.citedcount | 4 | |
| relation.isAuthorOfPublication | e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0 | |
| relation.isAuthorOfPublication.latestForDiscovery | e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
