Microstructural Modulation of Organic Passivation Layers for Metal Oxide Semiconductors to Achieve High Bias Stability

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Soc Chemistry

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Electrical properties of metal oxide thin-film transistors (TFTs) are tunedviathe microstructural control of organic back-channel passivation layers. In this study, organic semiconductor (OSC) passivation layers with various molecular and physicochemical properties are employed to identify the back-channel passivation mechanism in solution-processed amorphous indium gallium zinc oxide (a-IGZO) TFTs. The OSC microstructure influences the passivation of electrical defects ina-IGZO TFTs by compensating for acceptor-like trap states and dangling bonds in the back-channel. First, the distance between an n-type OSC (C-60) and thea-IGZO back-channel is controlled by employing phosphonic acid molecules with different carbon chain lengths. Positive bias stress stability is tuned by applying both the OSC and carbon chain effect, leading to stable, high-performance TFTs with the determination of subgap density of states to confirm the compensation effects on the total acceptor-like defect states. The n-doping of identical passivation layers is further investigated by using perylenedicarboximide derivatives to confirm the proposed n-doping mechanism. Finally, the semiconductor 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene is selected on the basis of our proposed passivation model and exhibited good passivation characteristics. This study demonstrates an ideal molecular design for organic passivation layers, which shows significant potential for the realization of stable, high-performance TFTs.

Description

Ho, Dongil/0009-0002-1105-1244; Kim, Choongik/0000-0001-7494-0677;

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

0103 physical sciences, 02 engineering and technology, 0210 nano-technology, 01 natural sciences

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
6

Source

Journal of Materials Chemistry C

Volume

8

Issue

32

Start Page

11209

End Page

11222
PlumX Metrics
Citations

CrossRef : 6

Scopus : 8

Captures

Mendeley Readers : 7

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.58922624

Sustainable Development Goals

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo