On the Existence of Positive Solutions for the Time-Scale Dynamic Equations on Infinite Intervals

dc.contributor.author Doǧan, Abdülkadir Muhittin
dc.date.accessioned 2025-09-25T10:53:43Z
dc.date.available 2025-09-25T10:53:43Z
dc.date.issued 2020
dc.description.abstract This paper investigates the existence of positive solutions to time-scale boundary value problems on infinite intervals. By applying the Leggett-Williams fixed point theorem in a cone, some new results for the existence of at least three positive solutions of boundary value problems are found. With infinite intervals, the theorem can be used to prove the existence of solutions of boundary value problems for nonlinear dynamic equations dependence on the delta derivative explicitly. Our results are new for the special cases of difference equations and differential equations as well as in the general time scale setting. © 2020 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1007/978-3-030-56323-3_1
dc.identifier.isbn 9783031848681
dc.identifier.isbn 9783031894978
dc.identifier.isbn 9789819630974
dc.identifier.isbn 9783031852879
dc.identifier.isbn 9788132223009
dc.identifier.isbn 9783030679958
dc.identifier.isbn 9783319185729
dc.identifier.isbn 9783319940595
dc.identifier.isbn 9789819748754
dc.identifier.isbn 9789819634590
dc.identifier.issn 2194-1017
dc.identifier.issn 2194-1009
dc.identifier.scopus 2-s2.0-85096625752
dc.identifier.uri https://doi.org/10.1007/978-3-030-56323-3_1
dc.identifier.uri https://hdl.handle.net/20.500.12573/4318
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Springer Proceedings in Mathematics and Statistics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Dynamic Equations en_US
dc.subject Fixed Point Theorems en_US
dc.subject Infinite Intervals en_US
dc.subject Positive Solutions en_US
dc.subject Time Scales en_US
dc.subject Boundary Value Problems en_US
dc.subject Difference Equations en_US
dc.subject Fixed Point Arithmetic en_US
dc.subject Time Measurement en_US
dc.subject Delta Derivatives en_US
dc.subject Dynamic Equations en_US
dc.subject Existence of Solutions en_US
dc.subject Infinite Interval en_US
dc.subject Leggett Williams Fixed Point Theorem en_US
dc.subject Non-Linear Dynamic Equations en_US
dc.subject Positive Solution en_US
dc.subject Time-Scale Boundary en_US
dc.subject Nonlinear Equations en_US
dc.title On the Existence of Positive Solutions for the Time-Scale Dynamic Equations on Infinite Intervals en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Doǧan, Abdülkadir Muhittin
gdc.author.scopusid 7101805539
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Doǧan] Abdülkadir Muhittin, Department of Applied Mathematics, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 10 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 1 en_US
gdc.description.volume 333 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3094384008
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5342481E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.1141E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.29
gdc.opencitations.count 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Doğan, Abdülkadir
relation.isAuthorOfPublication f79a54b3-64ad-46e8-adfc-228e8ca25a07
relation.isAuthorOfPublication.latestForDiscovery f79a54b3-64ad-46e8-adfc-228e8ca25a07
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 26c938e5-738e-41bf-8231-8de593870236
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files