Machine Learning Analysis of Inflammatory Bowel Disease-Associated Metagenomics Dataset

dc.contributor.author Hacilar, Hilal
dc.contributor.author Nalbantoĝlu, Özkan Ufuk
dc.contributor.author Bakir-Güngör, Burcu
dc.date.accessioned 2025-09-25T10:50:25Z
dc.date.available 2025-09-25T10:50:25Z
dc.date.issued 2018
dc.description Hacilar, Hilal/0000-0002-5811-6722; Bakir-Gungor, Burcu/0000-0002-2272-6270 en_US
dc.description.abstract There is an ongoing interplay between humans and our microbial communities. The microorganisms living in our gut produce energy from our food, strengthen our immune system, break down foreign products, and release metabolites and hormones, which are significant for regulating our physiology. The shifts away from this 'healthy' gut microbiome is considered to be associated with many diseases. Inflammatory bowel diseases (IBD) including Crohn's disease and ulcerative colitis, are gut related disorders affecting the intestinal tract. Although some metagenomics studies are conducted on IBD recently, our current understanding of the precise relationships between the human gut microbiome and IBD remains limited. In this regard, the use of state-of-the art machine learning approaches became popular to address a variety of questions like early diagnosis of certain diseases using human microbiota. In this study, we investigate which subset of gut microbiota are mostly associated with IBD and if disease-associated biomarkers can be detected via applying state-of-the art machine learning algorithms and proper feature selection methods. © 2019 Elsevier B.V., All rights reserved. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) [115E998] en_US
dc.description.sponsorship This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK), Grant No: 115E998. en_US
dc.identifier.doi 10.1109/UBMK.2018.8566487
dc.identifier.isbn 9781538678930
dc.identifier.scopus 2-s2.0-85060602166
dc.identifier.uri https://doi.org/10.1109/UBMK.2018.8566487
dc.identifier.uri https://hdl.handle.net/20.500.12573/4151
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 3rd International Conference on Computer Science and Engineering, UBMK 2018 -- Sarajevo -- 143560 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Feature Selection en_US
dc.subject Human Gut Microbiota en_US
dc.subject Inflammatory Bowel Diseases (Ibd) en_US
dc.subject Machine Learning en_US
dc.subject Metagenomics en_US
dc.subject Prediction en_US
dc.subject Diagnosis en_US
dc.subject Diseases en_US
dc.subject Feature Extraction en_US
dc.subject Forecasting en_US
dc.subject Learning Algorithms en_US
dc.subject Learning Systems en_US
dc.subject Microorganisms en_US
dc.subject Feature Selection Methods en_US
dc.subject Human Gut Microbiota en_US
dc.subject Human Microbiota en_US
dc.subject Inflammatory Bowel Disease en_US
dc.subject Machine Learning Approaches en_US
dc.subject Metagenomics en_US
dc.subject Microbial Communities en_US
dc.subject Ulcerative Colitis en_US
dc.subject Machine Learning en_US
dc.title Machine Learning Analysis of Inflammatory Bowel Disease-Associated Metagenomics Dataset en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Hacilar, Hilal/0000-0002-5811-6722
gdc.author.id Bakir-Gungor, Burcu/0000-0002-2272-6270
gdc.author.scopusid 57205573679
gdc.author.scopusid 36117887000
gdc.author.scopusid 25932029800
gdc.author.wosid Nalbantoglu, Ufuk/Aaa-8033-2022
gdc.author.wosid Hacılar, Hilal/Hgu-9217-2022
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Hacilar] Hilal, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Nalbantoĝlu] Özkan Ufuk, Department of Computer Engineering, Erciyes Üniversitesi, Kayseri, Turkey; [Bakir-Güngör] Burcu, Department of Computer Engineering, Erciyes Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 438 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 434 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W2905071882
gdc.identifier.wos WOS:000459847400083
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.downloads 0
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.918894E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 8.719871E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.views 2
gdc.openalex.collaboration National
gdc.openalex.fwci 5.21101992
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 13
gdc.plumx.mendeley 32
gdc.plumx.scopuscites 19
gdc.scopus.citedcount 19
gdc.virtual.author Hacılar, Hilal
gdc.virtual.author Güngör, Burcu
gdc.wos.citedcount 16
relation.isAuthorOfPublication ac461e50-4a71-4e82-b19b-0ae02f5d683a
relation.isAuthorOfPublication e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isAuthorOfPublication.latestForDiscovery ac461e50-4a71-4e82-b19b-0ae02f5d683a
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files