Machine Learning Analysis of Inflammatory Bowel Disease-Associated Metagenomics Dataset
| dc.contributor.author | Hacilar, Hilal | |
| dc.contributor.author | Nalbantoĝlu, Özkan Ufuk | |
| dc.contributor.author | Bakir-Güngör, Burcu | |
| dc.date.accessioned | 2025-09-25T10:50:25Z | |
| dc.date.available | 2025-09-25T10:50:25Z | |
| dc.date.issued | 2018 | |
| dc.description | Hacilar, Hilal/0000-0002-5811-6722; Bakir-Gungor, Burcu/0000-0002-2272-6270 | en_US |
| dc.description.abstract | There is an ongoing interplay between humans and our microbial communities. The microorganisms living in our gut produce energy from our food, strengthen our immune system, break down foreign products, and release metabolites and hormones, which are significant for regulating our physiology. The shifts away from this 'healthy' gut microbiome is considered to be associated with many diseases. Inflammatory bowel diseases (IBD) including Crohn's disease and ulcerative colitis, are gut related disorders affecting the intestinal tract. Although some metagenomics studies are conducted on IBD recently, our current understanding of the precise relationships between the human gut microbiome and IBD remains limited. In this regard, the use of state-of-the art machine learning approaches became popular to address a variety of questions like early diagnosis of certain diseases using human microbiota. In this study, we investigate which subset of gut microbiota are mostly associated with IBD and if disease-associated biomarkers can be detected via applying state-of-the art machine learning algorithms and proper feature selection methods. © 2019 Elsevier B.V., All rights reserved. | en_US |
| dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) [115E998] | en_US |
| dc.description.sponsorship | This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK), Grant No: 115E998. | en_US |
| dc.identifier.doi | 10.1109/UBMK.2018.8566487 | |
| dc.identifier.isbn | 9781538678930 | |
| dc.identifier.scopus | 2-s2.0-85060602166 | |
| dc.identifier.uri | https://doi.org/10.1109/UBMK.2018.8566487 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/4151 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | -- 3rd International Conference on Computer Science and Engineering, UBMK 2018 -- Sarajevo -- 143560 | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Feature Selection | en_US |
| dc.subject | Human Gut Microbiota | en_US |
| dc.subject | Inflammatory Bowel Diseases (Ibd) | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Metagenomics | en_US |
| dc.subject | Prediction | en_US |
| dc.subject | Diagnosis | en_US |
| dc.subject | Diseases | en_US |
| dc.subject | Feature Extraction | en_US |
| dc.subject | Forecasting | en_US |
| dc.subject | Learning Algorithms | en_US |
| dc.subject | Learning Systems | en_US |
| dc.subject | Microorganisms | en_US |
| dc.subject | Feature Selection Methods | en_US |
| dc.subject | Human Gut Microbiota | en_US |
| dc.subject | Human Microbiota | en_US |
| dc.subject | Inflammatory Bowel Disease | en_US |
| dc.subject | Machine Learning Approaches | en_US |
| dc.subject | Metagenomics | en_US |
| dc.subject | Microbial Communities | en_US |
| dc.subject | Ulcerative Colitis | en_US |
| dc.subject | Machine Learning | en_US |
| dc.title | Machine Learning Analysis of Inflammatory Bowel Disease-Associated Metagenomics Dataset | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Hacilar, Hilal/0000-0002-5811-6722 | |
| gdc.author.id | Bakir-Gungor, Burcu/0000-0002-2272-6270 | |
| gdc.author.scopusid | 57205573679 | |
| gdc.author.scopusid | 36117887000 | |
| gdc.author.scopusid | 25932029800 | |
| gdc.author.wosid | Nalbantoglu, Ufuk/Aaa-8033-2022 | |
| gdc.author.wosid | Hacılar, Hilal/Hgu-9217-2022 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Hacilar] Hilal, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Nalbantoĝlu] Özkan Ufuk, Department of Computer Engineering, Erciyes Üniversitesi, Kayseri, Turkey; [Bakir-Güngör] Burcu, Department of Computer Engineering, Erciyes Üniversitesi, Kayseri, Turkey | en_US |
| gdc.description.endpage | 438 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 434 | en_US |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W2905071882 | |
| gdc.identifier.wos | WOS:000459847400083 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.downloads | 0 | |
| gdc.oaire.impulse | 6.0 | |
| gdc.oaire.influence | 2.918894E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.popularity | 8.719871E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0301 basic medicine | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.views | 2 | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 5.21101992 | |
| gdc.openalex.normalizedpercentile | 0.96 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 13 | |
| gdc.plumx.mendeley | 32 | |
| gdc.plumx.scopuscites | 19 | |
| gdc.scopus.citedcount | 19 | |
| gdc.virtual.author | Hacılar, Hilal | |
| gdc.virtual.author | Güngör, Burcu | |
| gdc.wos.citedcount | 16 | |
| relation.isAuthorOfPublication | ac461e50-4a71-4e82-b19b-0ae02f5d683a | |
| relation.isAuthorOfPublication | e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0 | |
| relation.isAuthorOfPublication.latestForDiscovery | ac461e50-4a71-4e82-b19b-0ae02f5d683a | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
