Generating Emergency Evacuation Route Directions Based on Crowd Simulations With Reinforcement Learning

dc.contributor.author Unal, Ahmet Emin
dc.contributor.author Gezer, Cengiz
dc.contributor.author Kuleli Pak, Burcu Kuleli
dc.contributor.author Güngör, Vehbi Çağrı
dc.date.accessioned 2025-09-25T10:47:43Z
dc.date.available 2025-09-25T10:47:43Z
dc.date.issued 2022
dc.description.abstract In an emergency, it is vital to evacuate individuals from the dangerous environments. Emergency evacuation plan-ning ensures that the evacuation is safe and optimal in terms of evacuation time for all of the people in evacuation. To this end, the computer-enabled evacuation simulation systems are used to generate optimal routes for the evacuees. In this paper, a dynamic emergency evacuation route generator has been proposed based on indoor plans of the building and the locations of the evacuees. To generate the optimal routes in real-time, a reinforcement learning algorithm (proximal policy optimization) is presented. Comparative performance results show that the proposed model is successful for evacuating the individuals from the building in different scenarios. © 2022 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/ASYU56188.2022.9925560
dc.identifier.isbn 9781665488945
dc.identifier.scopus 2-s2.0-85142725214
dc.identifier.uri https://doi.org/10.1109/ASYU56188.2022.9925560
dc.identifier.uri https://hdl.handle.net/20.500.12573/3892
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 2022 Innovations in Intelligent Systems and Applications Conference, ASYU 2022 -- Antalya; Akdeniz University -- 183936 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Crowd Simulation en_US
dc.subject Deep Learning en_US
dc.subject Emergency Evacuation en_US
dc.subject Path Planning en_US
dc.subject Reinforcement Learning en_US
dc.subject Deep Learning en_US
dc.subject Learning Algorithms en_US
dc.subject Learning Systems en_US
dc.subject Reinforcement Learning en_US
dc.subject Crowd Simulation en_US
dc.subject Emergency Evacuation en_US
dc.subject Evacuation Plans en_US
dc.subject Evacuation Routes en_US
dc.subject Evacuation Simulation System en_US
dc.subject Evacuation Time en_US
dc.subject Optimal Routes en_US
dc.subject Reinforcement Learnings en_US
dc.subject Route Directions en_US
dc.subject Motion Planning en_US
dc.title Generating Emergency Evacuation Route Directions Based on Crowd Simulations With Reinforcement Learning en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57226401299
gdc.author.scopusid 57212210999
gdc.author.scopusid 57211331191
gdc.author.scopusid 10739803300
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Unal] Ahmet Emin, Huawei Turkey Research and Development Center, Istanbul, Turkey; [Gezer] Cengiz, Research and Development Center, Panasonic Electric Works Türkiye, Istanbul, Turkey; [Kuleli Pak] Burcu Kuleli, Huawei Turkey Research and Development Center, Istanbul, Turkey; [Güngör] Vehbi Çağrı, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 6
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4312745720
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.7557692E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.4451462E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 3.56398105
gdc.openalex.normalizedpercentile 0.93
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 4
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files