Generating Emergency Evacuation Route Directions Based on Crowd Simulations With Reinforcement Learning
| dc.contributor.author | Unal, Ahmet Emin | |
| dc.contributor.author | Gezer, Cengiz | |
| dc.contributor.author | Kuleli Pak, Burcu Kuleli | |
| dc.contributor.author | Güngör, Vehbi Çağrı | |
| dc.date.accessioned | 2025-09-25T10:47:43Z | |
| dc.date.available | 2025-09-25T10:47:43Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | In an emergency, it is vital to evacuate individuals from the dangerous environments. Emergency evacuation plan-ning ensures that the evacuation is safe and optimal in terms of evacuation time for all of the people in evacuation. To this end, the computer-enabled evacuation simulation systems are used to generate optimal routes for the evacuees. In this paper, a dynamic emergency evacuation route generator has been proposed based on indoor plans of the building and the locations of the evacuees. To generate the optimal routes in real-time, a reinforcement learning algorithm (proximal policy optimization) is presented. Comparative performance results show that the proposed model is successful for evacuating the individuals from the building in different scenarios. © 2022 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.1109/ASYU56188.2022.9925560 | |
| dc.identifier.isbn | 9781665488945 | |
| dc.identifier.scopus | 2-s2.0-85142725214 | |
| dc.identifier.uri | https://doi.org/10.1109/ASYU56188.2022.9925560 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3892 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | -- 2022 Innovations in Intelligent Systems and Applications Conference, ASYU 2022 -- Antalya; Akdeniz University -- 183936 | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Crowd Simulation | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Emergency Evacuation | en_US |
| dc.subject | Path Planning | en_US |
| dc.subject | Reinforcement Learning | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Learning Algorithms | en_US |
| dc.subject | Learning Systems | en_US |
| dc.subject | Reinforcement Learning | en_US |
| dc.subject | Crowd Simulation | en_US |
| dc.subject | Emergency Evacuation | en_US |
| dc.subject | Evacuation Plans | en_US |
| dc.subject | Evacuation Routes | en_US |
| dc.subject | Evacuation Simulation System | en_US |
| dc.subject | Evacuation Time | en_US |
| dc.subject | Optimal Routes | en_US |
| dc.subject | Reinforcement Learnings | en_US |
| dc.subject | Route Directions | en_US |
| dc.subject | Motion Planning | en_US |
| dc.title | Generating Emergency Evacuation Route Directions Based on Crowd Simulations With Reinforcement Learning | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57226401299 | |
| gdc.author.scopusid | 57212210999 | |
| gdc.author.scopusid | 57211331191 | |
| gdc.author.scopusid | 10739803300 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Unal] Ahmet Emin, Huawei Turkey Research and Development Center, Istanbul, Turkey; [Gezer] Cengiz, Research and Development Center, Panasonic Electric Works Türkiye, Istanbul, Turkey; [Kuleli Pak] Burcu Kuleli, Huawei Turkey Research and Development Center, Istanbul, Turkey; [Güngör] Vehbi Çağrı, Department of Computer Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey | en_US |
| gdc.description.endpage | 6 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1 | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4312745720 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.7557692E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 3.4451462E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 3.56398105 | |
| gdc.openalex.normalizedpercentile | 0.93 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 4 | |
| gdc.plumx.mendeley | 7 | |
| gdc.plumx.scopuscites | 6 | |
| gdc.scopus.citedcount | 6 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
