Artificial Neural Network Modeling and Simulation of In-Vitro Nanoparticle-Cell Interactions

dc.contributor.author Cenk, Neslihan
dc.contributor.author Budak, Gurer
dc.contributor.author Dayanik, Savas
dc.contributor.author Sabuncuoglu, Ihsan
dc.date.accessioned 2025-09-25T10:41:08Z
dc.date.available 2025-09-25T10:41:08Z
dc.date.issued 2014
dc.description.abstract In this research a prediction model for the cellular uptake efficiency of nanoparticles (NPs), which is the rate that NPs adhere to a cell surface or enter a cell, is investigated via an artificial neural network (ANN) method. An appropriate mathematical model for the prediction of the cellular uptake rate of NPs will significantly reduce the number of time-consuming experiments to determine which of the thousands of possible variables have an impact on NP uptake rate. Moreover, this study constitutes a basis for targeted drug delivery and cell-level detection, treatment and diagnosis of existing pathologies through simulating NP-cell interactions. Accordingly, this study will accelerate nanomedicine research. Our research focuses on building a proper ANN model based on a multilayered feed-forward back-propagation algorithm that depends on NP type, size, surface charge, concentration and time for prediction of cellular uptake efficiency. The NP types for in-vitro NP-healthy cell interaction analysis are polymethyl methacrylate (PMMA), silica and polylactic acid (PLA), all of whose shapes are spheres. The proposed ANN model has been developed on MATLAB Programming Language by optimizing a number of hidden layers (HLs), node numbers and training functions. The datasets are obtained from in-vitro NP-cell interaction experiments conducted by Nanomedicine and Advanced Technology Research Center. The dispersion characteristics and cell interactions with different NPs in organisms are explored using an optimal ANN prediction model. Simulating the possible interactions of targeted NPs with cells via an ANN model will be faster and cheaper compared to the excessive experimentation currently necessary. en_US
dc.identifier.doi 10.1166/jctn.2014.3348
dc.identifier.issn 1546-1955
dc.identifier.issn 1546-1963
dc.identifier.scopus 2-s2.0-84889030401
dc.identifier.uri https://doi.org/10.1166/jctn.2014.3348
dc.identifier.uri https://hdl.handle.net/20.500.12573/3327
dc.language.iso en en_US
dc.publisher Amer Scientific Publishers en_US
dc.relation.ispartof Journal of Computational and Theoretical Nanoscience
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Nanomedicine en_US
dc.subject Targeted Drug Delivery en_US
dc.subject Nanoparticle Uptake Rate en_US
dc.subject Artificial Neural Networks en_US
dc.subject Prediction Model. en_US
dc.title Artificial Neural Network Modeling and Simulation of In-Vitro Nanoparticle-Cell Interactions en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 55948205800
gdc.author.scopusid 23097323300
gdc.author.scopusid 8656758200
gdc.author.scopusid 7004373903
gdc.author.wosid Budak, Gürer/Aau-7033-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Cenk, Neslihan; Dayanik, Savas] Bilkent Univ, Dept Ind Engn, TR-06800 Ankara, Turkey; [Sabuncuoglu, Ihsan] Abdullah Gul Univ, TR-38039 Kayseri, Turkey en_US
gdc.description.endpage 282 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 272 en_US
gdc.description.volume 11 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality N/A
gdc.identifier.openalex W2320607095
gdc.identifier.wos WOS:000327903200037
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.downloads 64
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6497278E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Medical nanotechnology
gdc.oaire.keywords Optimization
gdc.oaire.keywords Polymethyl methacrylates
gdc.oaire.keywords Nanoparticle Uptake Rate
gdc.oaire.keywords 612
gdc.oaire.keywords Advanced technology
gdc.oaire.keywords Prediction model
gdc.oaire.keywords Feedforward backpropagation
gdc.oaire.keywords Artificial Neural Networks
gdc.oaire.keywords Targeted drug delivery
gdc.oaire.keywords Mathematical models
gdc.oaire.keywords Backpropagation algorithms
gdc.oaire.keywords Cellular uptake efficiency
gdc.oaire.keywords Targeted Drug Delivery
gdc.oaire.keywords Nanoparticle uptakes
gdc.oaire.keywords Computer simulation
gdc.oaire.keywords Prediction Model.
gdc.oaire.keywords Artificial neural network modeling
gdc.oaire.keywords Cell membranes
gdc.oaire.keywords Nanomedicine
gdc.oaire.keywords Prediction Model
gdc.oaire.keywords Drug delivery
gdc.oaire.keywords Dispersion characteristics
gdc.oaire.keywords Nanoparticles
gdc.oaire.keywords Experiments
gdc.oaire.keywords Cytology
gdc.oaire.keywords Neural networks
gdc.oaire.popularity 2.346595E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0303 health sciences
gdc.oaire.views 117
gdc.openalex.fwci 0.19558191
gdc.openalex.normalizedpercentile 0.6
gdc.opencitations.count 4
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.wos.citedcount 7
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files