Enhancing Sentiment Analysis in Stock Market Tweets Through Bert-Based Knowledge Transfer

dc.contributor.author Cicekyurt, Emre
dc.contributor.author Bakal, Gokhan
dc.date.accessioned 2025-09-25T10:46:30Z
dc.date.available 2025-09-25T10:46:30Z
dc.date.issued 2025
dc.description Bakal, Mehmet/0000-0003-2897-3894; en_US
dc.description.abstract One of the widely studied text classification efforts is sentiment analysis. It is a specific examination involving natural language processing and machine learning methods to understand semantic orientation from textual data. Working social media posts, such as tweets, for sentiment analysis, is quite common among researchers due to the speed of information dissemination. In this regard, forecasting stock market tweets is a widely studied research topic. Some studies have revealed a strong connection between sentiment and stock market performance, while others have not found any notable associations. The proposed work shows two distinct approaches to sentiment analysis over the stock market tweets. The first approach employs traditional machine learning algorithms, including logistic regression, random forest, and XGBoost. The second approach constructs deep learning (as a subfield of machine learning) models using LSTM and CNN algorithms to classify the test instances into positive, negative, or neutral classes through ten randomly shuffled data splits. In this study, the labeled data size is gradually increased utilizing a pre-trained model, FinBERT. It is exclusively employed to label unlabeled data instances to integrate them into the experiments. The goal is to monitor the effect of the additional newly-labeled examples on the sentiment analysis performance. The experiments showed that the average F1-score improved by 20% for the deep learning models and 17% for the machine learning models. In the end, the paper reveals a strong positive correlation between training data size and the classification performance of the experimental approaches. en_US
dc.description.sponsorship Abdullah Gul University en_US
dc.description.sponsorship Not applicable. en_US
dc.identifier.doi 10.1007/s10614-025-10901-8
dc.identifier.issn 0927-7099
dc.identifier.issn 1572-9974
dc.identifier.scopus 2-s2.0-85218903003
dc.identifier.uri https://doi.org/10.1007/s10614-025-10901-8
dc.identifier.uri https://hdl.handle.net/20.500.12573/3774
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Computational Economics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Financial Tweets en_US
dc.subject Text Mining en_US
dc.subject Machine & Deep Learning en_US
dc.title Enhancing Sentiment Analysis in Stock Market Tweets Through Bert-Based Knowledge Transfer en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Bakal, Mehmet/0000-0003-2897-3894
gdc.author.scopusid 59325097800
gdc.author.scopusid 57074041500
gdc.author.wosid Bakal, Mehmet Gokhan/Aat-2797-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Cicekyurt, Emre; Bakal, Gokhan] Abdullah Gul Univ, Dept Comp Engn, Erkilet Bulvd, TR-38080 Kayseri, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
gdc.description.wosquality Q2
gdc.identifier.openalex W4407925614
gdc.identifier.wos WOS:001431333600001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 2.9207659E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 8.076817E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 48.19745146
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.mendeley 31
gdc.plumx.scopuscites 11
gdc.scopus.citedcount 11
gdc.virtual.author Bakal, Mehmet Gökhan
gdc.wos.citedcount 5
relation.isAuthorOfPublication 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isAuthorOfPublication.latestForDiscovery 53ed538c-20d9-45c8-af59-7fa4d1b90cf7
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files